Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid H. Sarelius is active.

Publication


Featured researches published by Ingrid H. Sarelius.


Circulation Research | 1989

Arteriolar control of capillary cell flow in striated muscle.

Terrence E. Sweeney; Ingrid H. Sarelius

This study tests the hypothesis that capillary perfusion is controlled in groups rather than at the level of the individual capillary. We measured cell flux (using cells labeled with substituted tetramethyl rhodamine isothiocyanate, XRITC) and vessel diameter in adjoining arterioles of the terminal vasculature of hamster cremaster muscle (Nembutal, 70 mg/kg i.p.) during rest and hyperemia (10-4 M adenosine). In terminal arterioles (TAs), 32 of 68 vessels showed cell flux increases from rest to hyperemia exceeding 25 times (i.e., 47% of TAs were relatively unperfused at rest). In vessels feeding TAs (TAFs), 33 of 95 (34%) were relatively unperfused at rest. Cell flux heterogeneity in TAFs decreased significantly by 27% from rest to hyperemia; the corresponding decrease (16%) in TAs was not significant. Thus, unperfused TAFs are present in a proportion which reflects capillary recruitment in hamster cremaster (Sarelius et al, Am J Physiol 1981; 241:H317) while TAs are not, and TAFs independently modulate flow distribution distally while TAs do not. The data therefore support the conclusion that TAFs control cell flow in the distal microvasculature. Analysis of normalized ranked maximal diameters showed that TAFs unperfused at rest tend to be the smaller vessels at any tissue site.


Journal of Immunology | 2010

LFA-1 and Mac-1 Define Characteristically Different Intralumenal Crawling and Emigration Patterns for Monocytes and Neutrophils In Situ

Ronen Sumagin; Hen Prizant; Elena B. Lomakina; Richard E. Waugh; Ingrid H. Sarelius

To exit blood vessels, most (∼80%) of the lumenally adhered monocytes and neutrophils crawl toward locations that support transmigration. Using intravital confocal microscopy of anesthetized mouse cremaster muscle, we separately examined the crawling and emigration patterns of monocytes and neutrophils in blood-perfused unstimulated or TNF-α–activated venules. Most of the interacting cells in microvessels are neutrophils; however, in unstimulated venules, a greater percentage of the total monocyte population is adherent compared with neutrophils (58.2 ± 6.1% versus 13.6 ± 0.9%, adhered/total interacting), and they crawl for significantly longer distances (147.3 ± 13.4 versus 61.8 ± 5.4 μm). Intriguingly, after TNF-α activation, monocytes crawled for significantly shorter distances (67.4 ± 9.6 μm), resembling neutrophil crawling. Using function-blocking Abs, we show that these different crawling patterns were due to CD11a/CD18 (LFA-1)- versus CD11b/CD18 (Mac-1)-mediated crawling. Blockade of either Mac-1 or LFA-1 revealed that both LFA-1 and Mac-1 contribute to monocyte crawling; however, the LFA-1–dependent crawling in unstimulated venules becomes Mac-1 dependent upon inflammation, likely due to increased expression of Mac-1. Mac-1 alone was responsible for neutrophil crawling in both unstimulated and TNF-α–activated venules. Consistent with the role of Mac-1 in crawling, Mac-1 block (compared with LFA-1) was also significantly more efficient in blocking TNF-α–induced extravasation of both monocytes and neutrophils in cremaster tissue and the peritoneal cavity. Thus, mechanisms underlying leukocyte crawling are important in regulating the inflammatory responses by regulating the numbers of leukocytes that transmigrate.


FEBS Letters | 1998

Skeletal muscle contractions stimulate cGMP formation and attenuate vascular smooth muscle myosin phosphorylation via nitric oxide

Kim S. Lau; Robert W. Grange; Wen Jinn Chang; Kristine E. Kamm; Ingrid H. Sarelius; James T. Stull

Nitric oxide generated by neuronal nitric oxide synthase in contracting skeletal muscle fibers may regulate vascular relaxation via a cGMP‐mediated pathway. Neuronal nitric oxide synthase content is greatly reduced in skeletal muscles from mdx mice. cGMP formation increased in contracting extensor digitorum longus muscles in vitro from C57 control, but not mdx mice. The increase in cGMP content was abolished with N G‐nitro‐l‐arginine. Sodium nitroprusside treatment increased cGMP levels in muscles from both C57 and mdx mice. Skeletal muscle contractions also inhibited phenylephrine‐induced phosphorylation of smooth muscle myosin regulatory light chain. Arteriolar dilation was attenuated in contracting muscles from mdx but not C57 mice. NO generated in contracting skeletal muscle may contribute to vasodilation in response to exercise.


Acta Physiologica | 2010

Control of muscle blood flow during exercise: local factors and integrative mechanisms

Ingrid H. Sarelius; Ulrich Pohl

Understanding the control mechanisms of blood flow within the vasculature of skeletal muscle is clearly fascinating from a theoretical point of view due to the extremely tight coupling of tissue oxygen demands and blood flow. It also has practical implications as impairment of muscle blood flow and its prevention/reversal by exercise training has a major impact on widespread diseases such as hypertension and diabetes. Here we analyse the role of mediators generated by skeletal muscle activity on smooth muscle relaxation in resistance vessels in vitro and in vivo. We summarize their cellular mechanisms of action and their relative roles in exercise hyperaemia with regard to early and late responses. We also discuss the consequences of interactions among mediators with regard to identifying their functional significance. We focus on (potential) mechanisms integrating the action of the mediators and their effects among the cells of the intact arteriolar wall. This integration occurs both locally, partly due to myoendothelial communication, and axially along the vascular tree, thus enabling the local responses to be manifest along an entire functional vessel path. Though the concept of signal integration is intriguing, its specific role on the control of exercise hyperaemia and the consequences of its modulation under physiological and pathophysiological conditions still await additional analysis.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Leukocyte-endothelial cell interactions are linked to vascular permeability via ICAM-1-mediated signaling.

Ronen Sumagin; Elena B. Lomakina; Ingrid H. Sarelius

Two key characteristics of the inflammatory response are the recruitment of leukocytes to inflamed tissue as well as changes in vessel permeability. We explored the relationship between these two processes using intravital confocal microscopy in cremasters of anesthetized (65 mg/kg Nembutal ip) mice. We provide direct evidence that intercellular adhesion molecule-1 (ICAM-1) links leukocyte-endothelial cell interactions and changes in solute permeability (Ps). Importantly, we show that arterioles, not just venules, respond to proinflammatory stimuli, thus contributing to microvascular exchange. We identified two independent, ICAM-1-mediated pathways regulating Ps. Under control conditions in wild-type (WT) mice, there is a constitutive PKC-dependent pathway (Ps = 1.0 +/- 0.10 and 2.2 +/- 0.46 x 10(-6) cm/s in arterioles and venules, respectively), which was significantly reduced in ICAM-1 knockout (KO) mice (Ps = 0.54 +/- 0.07 and 0.77 +/- 0.11 x 10(-6) cm/s). The PKC inhibitor bisindolylmaleimid l (1 micromol/l in 0.01% DMSO) decreased P(s) in WT mice to levels similar to those in ICAM-1 KO mice. Likewise, a PKC activator (phorbol-12-myristate-acetate; 1 micromol/l in 0.01% DMSO) successfully restored Ps in ICAM-1 KO vessels to be not different from that of the WT controls. On the other hand, during TNF-alpha-induced inflammation, Ps in WT mice was significantly increased (2-fold in venules and 2.5-fold in arterioles) in a Src-dependent and PKC-independent manner. The blockade of Src (PP2; 2 micromol/l in 0.01% DMSO) but not PKC significantly reduced the TNF-alpha-dependent increase in Ps. We conclude that ICAM-1 plays an essential role in the regulation of Ps in microvessels and that there are two separate (constitutive and inducible) signaling pathways that regulate permeability under normal and inflamed conditions.


Circulation Research | 2008

Extracellular Matrix Fibronectin Mechanically Couples Skeletal Muscle Contraction With Local Vasodilation

Denise C. Hocking; Patricia A. Titus; Ronen Sumagin; Ingrid H. Sarelius

During exercise, local mechanisms in tissues cause arterioles to rapidly dilate to increase blood flow to tissues to meet the metabolic demands of contracting muscle. Despite decades of study, the mechanisms underlying this important aspect of blood flow control are still far from clear. We now report a novel mechanism wherein fibronectin fibrils in connective tissue matrices transduce signals from contracting skeletal muscle to local blood vessels to increase blood flow. Using intravital microscopy, we show that local vasodilation in response to skeletal muscle contraction is specifically inhibited by an antibody that recognizes the matricryptic site in the first type III repeat of fibronectin (FNIII-1). In the absence of skeletal muscle contraction, direct application of FNIII-1-containing fibronectin fragments to cremaster muscle arterioles in situ, triggered a rapid, specific, and reversible local dilation that was mediated by nitric oxide and required the cryptic, heparin-binding sequence of FNIII-1. Furthermore, application of function-blocking FNIII-1 peptides to cremaster muscle arterioles rapidly and specifically decreased their diameter, indicating that the matricryptic site of fibronectin also contributes to resting vascular tone. Alexa fluor 488-labeled fibronectin, administered intravenously, was rapidly assembled into elongated, branching fibrils in the extracellular matrix of intact cremaster muscle, demonstrating active polymerization of fibronectin in areas adjacent to blood vessels. Together, these data provide the first evidence that a matricryptic, heparin-binding site within fibronectin fibrils of adult connective tissue plays a dynamic role in regulating both vascular responses and vascular tone.


Journal of Experimental Medicine | 2012

Uropod elongation is a common final step in leukocyte extravasation through inflamed vessels

Young Min Hyun; Ronen Sumagin; Pranita P. Sarangi; Elena B. Lomakina; Michael G. Overstreet; Christina M. Baker; Deborah J. Fowell; Richard E. Waugh; Ingrid H. Sarelius; Minsoo Kim

Uropod elongation occurs during leukocyte extravasation.


Microvascular Research | 1984

An examination of the contribution of red cell spacing to the uniformity of oxygen flux at the capillary wall.

William J. Federspiel; Ingrid H. Sarelius

It is generally assumed that capillary blood is homogeneous for O2 supply and that red cells can provide a constant, uniform flux of O2 out of the capillary regardless of the spacing between cells. Using a simplified model of red cells moving through a capillary in skeletal muscle, an approximate analysis is developed to study the effect of red cell spacing on the ability of erythrocytes to provide a constant, uniform flux of O2 at the capillary wall. The results suggest the existence of a critical red cell separation distance above which the flux of O2 at the capillary wall between red cells cannot remain uniform and the capillary blood is no longer homogeneous for O2 supply. In resting muscle the predicted critical separation distance is greater than four cell lengths. During maximal O2 consumption, the critical separation distance predicted by the model is one cell length. These predictions agree closely with in vivo observations of red cell spacing. The total red cell flux through a capillary is determined not only by red cell spacing (hematocrit) but also by erythrocyte velocity; a simple example is given which suggests that changes in each of these variables are not equivalent in maintaining a constant and uniform flux of O2 at the capillary wall.


Microcirculation | 2003

Distributions of wall shear stress in venular convergences of mouse cremaster muscle.

Michael B. Kim; Ingrid H. Sarelius

Objective: Wall shear stress regulates a variety of vascular functions and can be affected by variations in blood viscosity and wall shear rate independently. Therefore, the distribution of wall shear stress was characterized in converging flow regions of postcapillary venules to identify the relative contributions of shear rate and viscosity to wall shear rate and to determine whether venular branching directly affects the local shear environment.


Journal of Immunology | 2010

Intercellular Adhesion Molecule-1 Enrichment near Tricellular Endothelial Junctions Is Preferentially Associated with Leukocyte Transmigration and Signals for Reorganization of These Junctions To Accommodate Leukocyte Passage

Ronen Sumagin; Ingrid H. Sarelius

Leukocyte transmigration occurs at specific locations (portals) on the endothelium, but the nature of these portals is not clear. Using intravital confocal microscopy of anesthetized mouse cremaster muscle in combination with immunofluorescence labeling, we showed that in microvessels transmigration is mainly junctional and preferentially occurs at tricellular endothelial junctional regions. Our data suggest that enrichment of ICAM-1 near ∼43% of these junctions makes these locations preferred for transmigration by signaling the location of a nearby portal, as well as preparing the endothelial cell (EC) junctions, to accommodate leukocyte passage. Blockade of the extracellular domain of the ICAM-1 significantly reduced transmigration (by 68.8 ± 4.5%) by reducing the ability of leukocytes to get to these portals. In contrast, blockade of the cytoplasmic tail of ICAM-1 reduced transmigration (by 71.1 ± 7.0%) by disabling VE-cadherin rearrangement. Importantly, venular convergences are optimally equipped to support leukocyte transmigration. Differences in EC morphology result in a significantly higher number of tricellular junctions in convergences compared with straight venular regions (20.7 ± 1.2 versus 12.43 ± 1.1/6000 μm2, respectively). Consequently, leukocyte adhesion and transmigration are significantly higher in convergences compared with straight regions (1.6- and 2.6-fold, respectively). Taken together, these data identify an important role for EC morphology and expression patterns of ICAM-1 in leukocyte transmigration.

Collaboration


Dive into the Ingrid H. Sarelius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge