Ingrid M. Nijholt
University of Groningen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingrid M. Nijholt.
Progress in Neurobiology | 2009
Peter J. van der Most; Amalia M. Dolga; Ingrid M. Nijholt; Paul G.M. Luiten; Ulrich Eisel
Clinical trials report that the class of drugs known as statins may be neuroprotective in Alzheimers and Parkinsons disease, and further trials are currently underway to test whether these drugs are also beneficial in multiple sclerosis and acute stroke treatment. Since statins are well tolerated and have relatively few side effects, they may be considered as viable drugs to ameliorate neurodegenerative diseases. However, the mechanism of their neuroprotective effects is only partly understood. In this article, we review the current data on the neuroprotective effects of statins and their underlying mechanisms. In the first section, we detail the mechanisms by which statins affect cellular signalling. The primary action of statins is to inhibit cellular cholesterol synthesis. However, the cholesterol synthesis pathway also has several by-products, the non-sterol isoprenoids that are also important in cellular functioning. Furthermore, reduced cholesterol levels may deplete the cholesterol-rich membrane domains known as lipid rafts, which in turn could affect cellular signalling. In the second section, we summarize how the effects on signalling translate into general neuroprotective effects through peripheral systems. Statins improve blood-flow, reduce coagulation, modulate the immune system and reduce oxidative damage. The final section deals with the effects of statins on the central nervous system, particularly during Alzheimers and Parkinsons disease, stroke and multiple sclerosis.
Journal of Alzheimer's Disease | 2009
Ivica Granic; Amalia M. Dolga; Ingrid M. Nijholt; Gertjan van Dijk; Ulrich Eisel
Inflammatory processes are a hallmark of many chronic diseases including Alzheimers disease and diabetes mellitus. Fairly recent statistical evidence indicating that type 2 diabetes increases the risk of developing Alzheimers disease has led to investigations of the potential common processes that could explain this relation. Here, we review the literature on how inflammation and the inducible nuclear factor NF-kappaB might be involved in both diabetes mellitus and Alzheimers disease and whether these factors can link both diseases.
Journal of Alzheimers Disease | 2009
Ivica Granic; Amalia M. Dolga; Ingrid M. Nijholt; Gertjan van Dijk; Ulrich Eisel
Inflammatory processes are a hallmark of many chronic diseases including Alzheimers disease and diabetes mellitus. Fairly recent statistical evidence indicating that type 2 diabetes increases the risk of developing Alzheimers disease has led to investigations of the potential common processes that could explain this relation. Here, we review the literature on how inflammation and the inducible nuclear factor NF-kappaB might be involved in both diabetes mellitus and Alzheimers disease and whether these factors can link both diseases.
Current Biology | 2008
Eddy A. Van der Zee; Robbert Havekes; R. Paulien Barf; Roelof A. Hut; Ingrid M. Nijholt; Edwin H. Jacobs; Menno P. Gerkema
Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.
Behavioural Brain Research | 2011
Aren van Waarde; Nisha Kuzhuppilly Ramakrishnan; Anna A. Rybczynska; Philip H. Elsinga; Kiichi Ishiwata; Ingrid M. Nijholt; Paul G.M. Luiten; Rudi Dierckx
This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially considered as a subtype of the opioid family, are unique ligand-regulated molecular chaperones in the endoplasmatic reticulum playing a modulatory role in intracellular calcium signaling and in the activity of several neurotransmitter systems, particularly the cholinergic and glutamatergic pathways. Several central nervous system (CNS) drugs show high to moderate affinities for sigma-1 receptors, including acetylcholinesterase inhibitors (donepezil), antipsychotics (haloperidol, rimcazole), selective serotonin reuptake inhibitors (fluvoxamine, sertraline) and monoamine oxidase inhibitors (clorgyline). These compounds can influence cognitive functions both via their primary targets and by activating sigma-1 receptors in the CNS. Sigma-1 agonists show powerful anti-amnesic and neuroprotective effects in a large variety of animal models of cognitive dysfunction involving, among others (i) pharmacologic target blockade (with muscarinic or NMDA receptor antagonists or p-chloroamphetamine); (ii) selective lesioning of cholinergic neurons; (iii) CNS administration of β-amyloid peptides; (iv) aging-induced memory loss, both in normal and senescent-accelerated rodents; (v) neurodegeneration induced by toxic compounds (CO, trimethyltin, cocaine), and (vi) prenatal restraint stress.
Journal of Neurochemistry | 2008
Amalia M. Dolga; Ivica Granic; Thomas Blank; Hans‐Guenther Knaus; Joachim Spiess; Paul G.M. Luiten; Ulrich Eisel; Ingrid M. Nijholt
Previous studies have shown that tumor necrosis factor‐alpha (TNF‐α) induces neuroprotection against excitotoxic damage in primary cortical neurons via sustained nuclear factor‐kappa B (NF‐κB) activation. The transcription factor NF‐κB can regulate the expression of small conductance calcium‐activated potassium (KCa) channels. These channels reduce neuronal excitability and as such may yield neuroprotection against neuronal overstimulation. In the present study we investigated whether TNF‐α‐mediated neuroprotective signaling is inducing changes in the expression of small conductance KCa channels. Interestingly, the expression of KCa2.2 channel was up‐regulated by TNF‐α treatment in a time‐dependent manner whereas the expression of KCa2.1 and KCa2.3 channels was not altered. The increase in KCa2.2 channel expression after TNF‐α treatment was shown to be dependent on TNF‐R2 and NF‐κB activation. Furthermore, activation of small conductance KCa channels by 6,7‐dichloro‐1H‐indole‐2,3‐dione 3‐oxime or cyclohexyl‐[2‐(3,5‐dimethyl‐pyrazol‐1‐yl)‐6‐methyl‐pyrimidin‐4‐yl]‐amine‐induced neuroprotection against a glutamate challenge. Treatment with the small conductance KCa channel blocker apamin or KCa2.2 channel siRNA reverted the neuroprotective effect elicited by TNF‐α. We conclude that treatment of primary cortical neurons with TNF‐α leads to increased KCa2.2 channel expression which renders neurons more resistant to excitotoxic cell death.
Cellular Signalling | 2008
Ingrid M. Nijholt; Amalia M. Dolga; Anghelus Ostroveanu; Paul G.M. Luiten; Martina Schmidt; Ulrich Eisel
In diverse neuronal processes ranging from neuronal survival to synaptic plasticity cyclic adenosine monophosphate (cAMP)-dependent signaling is tightly connected with the protein kinase B (PKB)/Akt pathway but the precise nature of this connection remains unknown. In the current study we investigated the effect of two mainstream pathways initiated by cAMP, cAMP-dependent protein kinase (PKA) and exchange proteins directly activated by cAMP (Epac1 and Epac2) on PKB/Akt phosphorylation in primary cortical neurons and HT-4 cells. We demonstrate that PKA activation leads to a reduction of PKB/Akt phosphorylation, whereas activation of Epac has the opposite effect. This effect of Epac on PKB/Akt phosphorylation was mediated by Rap activation. The increase in PKB/Akt phosphorylation after Epac activation could be blocked by pretreatment with Epac2 siRNA and to a somewhat smaller extent by Epac1 siRNA. PKA, PKB/Akt and Epac were all shown to establish complexes with neuronal A-kinase anchoring protein150 (AKAP150). Interestingly, activation of Epac increased phosphorylation of PKB/Akt complexed to AKAP150. From experiments using PKA-binding deficient AKAP150 and peptides disrupting PKA anchoring to AKAPs, we conclude that AKAP150 acts as a key regulator in the two cAMP pathways to control PKB/Akt phosphorylation.
Journal of Alzheimer's Disease | 2008
Amalia M. Dolga; Ingrid M. Nijholt; Anghelus Ostroveanu; Quirine ten Bosch; Paul G.M. Luiten; Ulrich Eisel
Statins are widely used as medication to lower cholesterol levels in human patients. In addition, it was recently reported that they also reduce the incidence of stroke and progression of Alzheimers disease when prophylactically administered. To date there is only limited information available on how statins exert this beneficial effect. In this study we investigated the neuroprotective effect of lovastatin in primary cortical neurons. We found that lovastatin protects cortical neurons in a concentration-dependent manner against glutamate-mediated excitotoxicity. Interestingly, lovastatin with or without glutamate and/or tumor necrosis factor-alpha (TNF-alpha) increased TNF receptor 2 (TNF-R2) expression in cortical neurons. It was previously shown that activation of TNF-R2 signaling, which includes phosphorylation of protein kinase B (PKB)/Akt and activation of nuclear factor-kappa B (NF-kappaB), protects neurons against ischemic or excitotoxic insults. To investigate if lovastatin-induced neuroprotection was mediated by TNF-R2 signaling, primary cortical neurons were isolated from TNF-R1(-/-) or TNF-R2(-/-) mice. We could show that lovastatin is neuroprotective in TNF-R1(-/-) neurons, while protection is completely absent in TNF-R2(-/-) neurons. Furthermore, lovastatin-mediated neuroprotection led to an increase in PKB/Akt and NF-kappaB phosphorylation, whereas inhibition of PKB/Akt activation entirely abolished lovastatin-induced neuroprotection. Thus, lovastatin-induced neuroprotection against glutamate-excitotoxicity via activation of TNF-R2-signaling pathways.
Journal of Alzheimers Disease | 2012
Nikoletta Dobos; Erik F. J. de Vries; Ido P. Kema; Konstantinos Patas; Marloes Prins; Ingrid M. Nijholt; Rudi Dierckx; Jakob Korf; Johan A. den Boer; Paul G.M. Luiten; Ulrich Eisel
Indoleamine 2,3-dioxygenase (IDO), an enzyme which is activated by pro-inflammatory cytokines, has been suggested as a potential link between neuroinflammatory processes in neurodegenerative diseases (like Alzheimers disease) and depression. The present study aimed to determine whether neuroinflammation-induced increased IDO levels in the mammalian brain will lead to depressive-like behavior. Neuroinflammation was initiated in mice by a single intracerebroventricular injection of lipopolysaccharide (LPS). Cerebral inflammation was monitored 1, 2, 3 and 4 days after the injection with small-animal positron emission tomography (PET) using the inflammatory marker [(11)C]-PK11195. In the presence or absence of systemically applied 1-methyl-tryptophan (1-MT), a competitive IDO-inhibitor, we assessed the development of depressive-like behavioral symptoms in parallel with IDO expression and activity. The PK11195 PET signal reached a highly significant peak 3 days after LPS injection, while these animals displayed a significant increase of depressive-like behavior in the forced swim test compared to vehicle-injected animals. These findings were paralleled by a significant increase of IDO in the brainstem, and an increased kynurenine/tryptophan ratio in the serum. Moreover, we report here for the first time, that inhibition of IDO by 1-MT in centrally induced neuroinflammation under experimental conditions can prevent the development of depressive-like behavior.
Brain Research | 2007
Anghelus Ostroveanu; Eddy A. Van der Zee; Amalia M. Dolga; Paul G.M. Luiten; Ulrich Eisel; Ingrid M. Nijholt
A-kinase anchoring proteins (AKAPs) form large macromolecular signaling complexes that specifically target cAMP-dependent protein kinase (PKA) to unique subcellular compartments and thus, provide high specificity to PKA signaling. For example, the AKAP79/150 family tethers PKA, PKC and PP2B to neuronal membranes and postsynaptic densities and plays an important role in synaptic function. Several studies suggested that AKAP79/150 anchored PKA contributes to mechanisms associated with synaptic plasticity and memory processes, but the precise role of AKAPs in these processes is still unknown. In this study we established the mouse brain distribution of AKAP150 using two well-characterized AKAP150 antibodies. Using Western blotting and immunohistochemistry we showed that AKAP150 is widely distributed throughout the mouse brain. The highest AKAP150 expression levels were observed in striatum, cerebral cortex and several other forebrain regions (e.g. olfactory tubercle), relatively high expression was found in hippocampus and olfactory bulb and low/no expression in cerebellum, hypothalamus, thalamus and brain stem. Although there were some minor differences in mouse AKAP150 brain distribution compared to the distribution in rat brain, our data suggested that rodents have a characteristic AKAP150 brain distribution pattern. In general we observed that AKAP150 is strongly expressed in mouse brain regions involved in learning and memory. These data support its suggested role in synaptic plasticity and memory processes.