Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid Meulenbelt is active.

Publication


Featured researches published by Ingrid Meulenbelt.


PLOS Genetics | 2012

Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.

Zari Dastani; Marie-France Hivert; John Perry; Robert A. Scott; Peter Henneman; M. Heid; Christian Fuchsberger; Toshiko Tanaka; Andrew P. Morris; Aaron Isaacs; Kurt Lohman; James S. Pankow; David Evans; Beate St; Stefania Bandinelli; Olga D. Carlson; Josephine M. Egan; Britt-Marie Loo; Toby Johnson; Robert K. Semple; Tanya M. Teslovich; Matthew A. Allison; Susan Redline; Sarah G. Buxbaum; Karen L. Mohlke; Ingrid Meulenbelt; Christie M. Ballantyne; George Dedoussis; Frank B. Hu; Yongmei Liu

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8–1.2×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.


The Lancet | 2012

Identification of new susceptibility loci for osteoarthritis (arcOGEN): A genome-wide association study

Eleftheria Zeggini; Kalliope Panoutsopoulou; Lorraine Southam; N W Rayner; Aaron G. Day-Williams; M C Lopes; Vesna Boraska; T. Esko; Evangelos Evangelou; A Hoffman; Jeanine J. Houwing-Duistermaat; Thorvaldur Ingvarsson; Ingileif Jonsdottir; H Jonnson; Hanneke J. M. Kerkhof; Margreet Kloppenburg; S.D. Bos; Massimo Mangino; Sarah Metrustry; P E Slagboom; Gudmar Thorleifsson; Raine Eva.; Madhushika Ratnayake; M Ricketts; Claude Beazley; Hannah Blackburn; Suzannah Bumpstead; K S Elliott; Sarah Hunt; Simon Potter

Summary Background Osteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity. Methods We undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11 009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42 938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent. Findings We identified five genome-wide significant loci (binomial test p≤5·0×10−8) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08–1·16]; p=7·24×10−11), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight—a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects. Interpretation Our findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention. Funding arcOGEN was funded by a special purpose grant from Arthritis Research UK.


Annals of the Rheumatic Diseases | 2013

Value of biomarkers in osteoarthritis: current status and perspectives.

Martin Lotz; Johanne Martel-Pelletier; Claus Christiansen; Maria Luisa Brandi; Olivier Bruyère; Roland Chapurlat; Julien Collette; C Cooper; Giampaolo Giacovelli; John A. Kanis; M.A. Karsdal; Virginia B. Kraus; Willem F. Lems; Ingrid Meulenbelt; Jean-Pierre Pelletier; J.-P. Raynauld; Susanne Reiter-Niesert; René Rizzoli; Linda J. Sandell; W.E. van Spil; Jean-Yves Reginster

Osteoarthritis affects the whole joint structure with progressive changes in cartilage, menisci, ligaments and subchondral bone, and synovial inflammation. Biomarkers are being developed to quantify joint remodelling and disease progression. This article was prepared following a working meeting of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis convened to discuss the value of biochemical markers of matrix metabolism in drug development in osteoarthritis. The best candidates are generally molecules or molecular fragments present in cartilage, bone or synovium and may be specific to one type of joint tissue or common to them all. Many currently investigated biomarkers are associated with collagen metabolism in cartilage or bone, or aggrecan metabolism in cartilage. Other biomarkers are related to non-collagenous proteins, inflammation and/or fibrosis. Biomarkers in osteoarthritis can be categorised using the burden of disease, investigative, prognostic, efficacy of intervention, diagnostic and safety classification. There are a number of promising candidates, notably urinary C-terminal telopeptide of collagen type II and serum cartilage oligomeric protein, although none is sufficiently discriminating to differentiate between individual patients and controls (diagnostic) or between patients with different disease severities (burden of disease), predict prognosis in individuals with or without osteoarthritis (prognostic) or perform so consistently that it could function as a surrogate outcome in clinical trials (efficacy of intervention). Future avenues for research include exploration of underlying mechanisms of disease and development of new biomarkers; technological development; the ‘omics’ (genomics, metabolomics, proteomics and lipidomics); design of aggregate scores combining a panel of biomarkers and/or imaging markers into single diagnostic algorithms; and investigation into the relationship between biomarkers and prognosis.


Arthritis & Rheumatism | 2010

A Genome-Wide Association Study Identifies an Osteoarthritis Susceptibility Locus on Chromosome 7q22

Kerkhof Hjm.; Rik Lories; Ingrid Meulenbelt; Ingileif Jonsdottir; Ana M. Valdes; P. Arp; Thorvaldur Ingvarsson; Mila Jhamai; Helgi Jonsson; Lisette Stolk; Gudmar Thorleifsson; Guangju Zhai; Feng Zhang; Yanyan Zhu; R. van der Breggen; A J Carr; Michael Doherty; Sally Doherty; David T. Felson; Antonio Gonzalez; Bjarni V. Halldórsson; Deborah J. Hart; Valdimar B. Hauksson; Albert Hofman; Ioannidis Jpa.; Margreet Kloppenburg; Nancy E. Lane; John Loughlin; Frank P. Luyten; Michael C. Nevitt

OBJECTIVE To identify novel genes involved in osteoarthritis (OA), by means of a genome-wide association study. METHODS We tested 500,510 single-nucleotide polymorphisms (SNPs) in 1,341 Dutch Caucasian OA cases and 3,496 Dutch Caucasian controls. SNPs associated with at least 2 OA phenotypes were analyzed in 14,938 OA cases and approximately 39,000 controls. Meta-analyses were performed using the program Comprehensive Meta-analysis, with P values <1 x 10(-7) considered genome-wide significant. RESULTS The C allele of rs3815148 on chromosome 7q22 (minor allele frequency 23%; intron 12 of the COG5 gene) was associated with a 1.14-fold increased risk (95% confidence interval 1.09-1.19) of knee and/or hand OA (P = 8 x 10(-8)) and also with a 30% increased risk of knee OA progression (95% confidence interval 1.03-1.64) (P = 0.03). This SNP is in almost complete linkage disequilibrium with rs3757713 (68 kb upstream of GPR22), which is associated with GPR22 expression levels in lymphoblast cell lines (P = 4 x 10(-12)). Immunohistochemistry experiments revealed that G protein-coupled receptor protein 22 (GPR22) was absent in normal mouse articular cartilage or synovium. However, GPR22-positive chondrocytes were found in the upper layers of the articular cartilage of mouse knee joints that were challenged with in vivo papain treatment or methylated bovine serum albumin treatment. GPR22-positive chondrocyte-like cells were also found in osteophytes in instability-induced OA. CONCLUSION Our findings identify a novel common variant on chromosome 7q22 that influences susceptibility to prevalence and progression of OA. Since the GPR22 gene encodes a G protein-coupled receptor, this is potentially an interesting therapeutic target.


Arthritis & Rheumatism | 2009

Large‐scale analysis of association between GDF5 and FRZB variants and osteoarthritis of the hip, knee, and hand

Evangelos Evangelou; Kay Chapman; Ingrid Meulenbelt; Fotini B. Karassa; John Loughlin; Andrew Carr; Michael Doherty; Sally Doherty; Juan J. Gomez-Reino; Antonio Gonzalez; Bjarni V. Halldórsson; Valdimar B. Hauksson; Albert Hofman; Deborah J. Hart; Shiro Ikegawa; Thorvaldur Ingvarsson; Qing Jiang; Ingileif Jonsdottir; Helgi Jonsson; Hanneke J. M. Kerkhof; Margreet Kloppenburg; Nancy E. Lane; Jia Li; Rik Lories; Joyce B. J. van Meurs; Annu Näkki; Michael C. Nevitt; Julio Rodriguez-Lopez; Dongquan Shi; P. Eline Slagboom

OBJECTIVE GDF5 and FRZB have been proposed as genetic loci conferring susceptibility to osteoarthritis (OA); however, the results of several studies investigating the association of OA with the rs143383 polymorphism of the GDF5 gene or the rs7775 and rs288326 polymorphisms of the FRZB gene have been conflicting or inconclusive. To examine these associations, we performed a large-scale meta-analysis of individual-level data. METHODS Fourteen teams contributed data on polymorphisms and knee, hip, and hand OA. For rs143383, the total number of cases and controls, respectively, was 5,789 and 7,850 for hip OA, 5,085 and 8,135 for knee OA, and 4,040 and 4,792 for hand OA. For rs7775, the respective sample sizes were 4,352 and 10,843 for hip OA, 3,545 and 6,085 for knee OA, and 4,010 and 5,151 for hand OA, and for rs288326, they were 4,346 and 8,034 for hip OA, 3,595 and 6,106 for knee OA, and 3,982 and 5,152 for hand OA. For each individual study, sex-specific odds ratios (ORs) were calculated for each OA phenotype that had been investigated. The ORs for each phenotype were synthesized using both fixed-effects and random-effects models for allele-based effects, and also for haplotype effects for FRZB. RESULTS A significant random-effects summary OR for knee OA was demonstrated for rs143383 (1.15 [95% confidence interval 1.09-1.22]) (P=9.4x10(-7)), with no significant between-study heterogeneity. Estimates of effect sizes for hip and hand OA were similar, but a large between-study heterogeneity was observed, and statistical significance was borderline (for OA of the hip [P=0.016]) or absent (for OA of the hand [P=0.19]). Analyses for FRZB polymorphisms and haplotypes did not reveal any statistically significant signals, except for a borderline association of rs288326 with hip OA (P=0.019). CONCLUSION Evidence of an association between the GDF5 rs143383 polymorphism and OA is substantially strong, but the genetic effects are consistent across different populations only for knee OA. Findings of this collaborative analysis do not support the notion that FRZB rs7775 or rs288326 has any sizable genetic effect on OA phenotypes.


Molecular Psychiatry | 2014

A genome-wide association study of anorexia nervosa

Vesna Boraska; Jab Floyd; Lorraine Southam; N W Rayner; Ioanna Tachmazidou; Stephanie Zerwas; Osp Davis; Sietske G. Helder; R Burghardt; K Egberts; Stefan Ehrlich; Susann Scherag; Nicolas Ramoz; Judith Hendriks; Eric Strengman; A. van Elburg; A Bruson; Maurizio Clementi; M Forzan; E Tenconi; Elisa Docampo; Geòrgia Escaramís; A Rajewski; A Slopien; Leila Karhunen; Ingrid Meulenbelt; Mario Maj; Artemis Tsitsika; L Slachtova; Zeynep Yilmaz

Anorexia nervosa (AN) is a complex and heritable eating disorder characterized by dangerously low body weight. Neither candidate gene studies nor an initial genome-wide association study (GWAS) have yielded significant and replicated results. We performed a GWAS in 2907 cases with AN from 14 countries (15 sites) and 14 860 ancestrally matched controls as part of the Genetic Consortium for AN (GCAN) and the Wellcome Trust Case Control Consortium 3 (WTCCC3). Individual association analyses were conducted in each stratum and meta-analyzed across all 15 discovery data sets. Seventy-six (72 independent) single nucleotide polymorphisms were taken forward for in silico (two data sets) or de novo (13 data sets) replication genotyping in 2677 independent AN cases and 8629 European ancestry controls along with 458 AN cases and 421 controls from Japan. The final global meta-analysis across discovery and replication data sets comprised 5551 AN cases and 21 080 controls. AN subtype analyses (1606 AN restricting; 1445 AN binge–purge) were performed. No findings reached genome-wide significance. Two intronic variants were suggestively associated: rs9839776 (P=3.01 × 10−7) in SOX2OT and rs17030795 (P=5.84 × 10−6) in PPP3CA. Two additional signals were specific to Europeans: rs1523921 (P=5.76 × 10−6) between CUL3 and FAM124B and rs1886797 (P=8.05 × 10−6) near SPATA13. Comparing discovery with replication results, 76% of the effects were in the same direction, an observation highly unlikely to be due to chance (P=4 × 10−6), strongly suggesting that true findings exist but our sample, the largest yet reported, was underpowered for their detection. The accrual of large genotyped AN case-control samples should be an immediate priority for the field.


Arthritis & Rheumatism | 1999

Heritabilities of radiologic osteoarthritis in peripheral joints and of disc degeneration of the spine

C. Bijkerk; Jeanine J. Houwing-Duistermaat; Hans A. Valkenburg; Ingrid Meulenbelt; Albert Hofman; Ferdinand C. Breedveld; Huibert A. P. Pols; Cornelia M. van Duijn; P. Eline Slagboom

OBJECTIVE To estimate the genetic influence on the occurrence of radiologic osteoarthritis (ROA) in the knees, hips, and hands and disc degeneration of the spine in the general population. METHODS A random sample of 1,583 individuals was drawn to estimate the prevalence of ROA and disc degeneration in the general population. Of 118 probands with multiple affected joint sites who were derived from this sample, we were able to recruit 257 siblings. The variance of ROA and disc degeneration within sibling pairs was compared with the variance between sibling pairs. Heritability estimates for ROA in the knees, hips, and hands and for disc degeneration of the spine were calculated. OA was defined according to radiologic criteria, using the Kellgren/Lawrence grading system. RESULTS We observed that hand ROA and disc degeneration of the spine were statistically significantly more frequent in siblings than in the random sample, whereas the prevalence of knee and of hip ROA was similar and lower, respectively. Heritability estimates for hand ROA and disc degeneration were statistically significant, P = 0.56 (95% confidence interval [95% CI] 0.34-0.76) and P = 0.75 (95% CI 0.30-1.00), respectively. For knee and hip ROA, no evidence of a genetic effect in the general population was found. Finally, the heritability estimate for a score that summed the number of joints affected in the knees, hips, hands, and spine was 0.78 (95% CI 0.52-0.98). All heritability estimates were adjusted for age, sex, body mass index, and bone mineral density. CONCLUSION The present study shows that in the general population, there is a strong genetic effect for hand ROA and disc degeneration of the spine. The findings on the total number of joints affected at multiple sites suggest genetic susceptibility to generalized OA.


Epigenetics & Chromatin | 2013

Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array

Roderick C. Slieker; S.D. Bos; Jelle J. Goeman; Rudolf P. Talens; Ruud van der Breggen; H. Eka D. Suchiman; Eric-Wubbo Lameijer; Hein Putter; Erik B. van den Akker; Yanju Zhang; J. Wouter Jukema; P. Eline Slagboom; Ingrid Meulenbelt; Bastiaan T. Heijmans

BackgroundDNA methylation has been recognized as a key mechanism in cell differentiation. Various studies have compared tissues to characterize epigenetically regulated genomic regions, but due to differences in study design and focus there still is no consensus as to the annotation of genomic regions predominantly involved in tissue-specific methylation. We used a new algorithm to identify and annotate tissue-specific differentially methylated regions (tDMRs) from Illumina 450k chip data for four peripheral tissues (blood, saliva, buccal swabs and hair follicles) and six internal tissues (liver, muscle, pancreas, subcutaneous fat, omentum and spleen with matched blood samples).ResultsThe majority of tDMRs, in both relative and absolute terms, occurred in CpG-poor regions. Further analysis revealed that these regions were associated with alternative transcription events (alternative first exons, mutually exclusive exons and cassette exons). Only a minority of tDMRs mapped to gene-body CpG islands (13%) or CpG islands shores (25%) suggesting a less prominent role for these regions than indicated previously. Implementation of ENCODE annotations showed enrichment of tDMRs in DNase hypersensitive sites and transcription factor binding sites. Despite the predominance of tissue differences, inter-individual differences in DNA methylation in internal tissues were correlated with those for blood for a subset of CpG sites in a locus- and tissue-specific manner.ConclusionsWe conclude that tDMRs preferentially occur in CpG-poor regions and are associated with alternative transcription. Furthermore, our data suggest the utility of creating an atlas cataloguing variably methylated regions in internal tissues that correlate to DNA methylation measured in easy accessible peripheral tissues.


Annals of the Rheumatic Diseases | 2011

Meta-analysis of genome-wide association studies confirms a susceptibility locus for knee osteoarthritis on chromosome 7q22

Evangelos Evangelou; Ana M. Valdes; Hanneke J. M. Kerkhof; Unnur Styrkarsdottir; Yanyan Zhu; Ingrid Meulenbelt; Rik Lories; Fotini B. Karassa; Przemko Tylzanowski; S.D. Bos; Toru Akune; N K Arden; Andrew Carr; Kay Chapman; L. Adrienne Cupples; Jin Dai; Panos Deloukas; Michael Doherty; Sally Doherty; Gunnar Engström; Antonio Gonzalez; Bjarni V. Halldórsson; Christina L. Hammond; Deborah J. Hart; Hafdis T. Helgadottir; Albert Hofman; Shiro Ikegawa; Thorvaldur Ingvarsson; Qing Jiang; Helgi Jonsson

Objectives Osteoarthritis (OA) is the most prevalent form of arthritis and accounts for substantial morbidity and disability, particularly in older people. It is characterised by changes in joint structure, including degeneration of the articular cartilage, and its aetiology is multifactorial with a strong postulated genetic component. Methods A meta-analysis was performed of four genome-wide association (GWA) studies of 2371 cases of knee OA and 35 909 controls in Caucasian populations. Replication of the top hits was attempted with data from 10 additional replication datasets. Results With a cumulative sample size of 6709 cases and 44 439 controls, one genome-wide significant locus was identified on chromosome 7q22 for knee OA (rs4730250, p=9.2×10−9), thereby confirming its role as a susceptibility locus for OA. Conclusion The associated signal is located within a large (500 kb) linkage disequilibrium block that contains six genes: PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, β), HPB1 (HMG-box transcription factor 1), COG5 (component of oligomeric golgi complex 5), GPR22 (G protein-coupled receptor 22), DUS4L (dihydrouridine synthase 4-like) and BCAP29 (B cell receptor-associated protein 29). Gene expression analyses of the (six) genes in primary cells derived from different joint tissues confirmed expression of all the genes in the joint environment.


Annals of the Rheumatic Diseases | 2011

Insights into the genetic architecture of osteoarthritis from stage 1 of the arcOGEN study

Kalliope Panoutsopoulou; Lorraine Southam; Katherine S. Elliott; N Wrayner; Guangju Zhai; Claude Beazley; Gudmar Thorleifsson; N K Arden; Andrew Carr; Kay Chapman; Panos Deloukas; Michael Doherty; A. W. McCaskie; William Ollier; Stuart H. Ralston; Tim D. Spector; Ana M. Valdes; Gillian A. Wallis; J M Wilkinson; E Arden; K Battley; Hannah Blackburn; F.J. Blanco; Suzannah Bumpstead; L. A. Cupples; Aaron G. Day-Williams; K Dixon; Sally Doherty; Tonu Esko; Evangelos Evangelou

Objectives The genetic aetiology of osteoarthritis has not yet been elucidated. To enable a well-powered genome-wide association study (GWAS) for osteoarthritis, the authors have formed the arcOGEN Consortium, a UK-wide collaborative effort aiming to scan genome-wide over 7500 osteoarthritis cases in a two-stage genome-wide association scan. Here the authors report the findings of the stage 1 interim analysis. Methods The authors have performed a genome-wide association scan for knee and hip osteoarthritis in 3177 cases and 4894 population-based controls from the UK. Replication of promising signals was carried out in silico in five further scans (44 449 individuals), and de novo in 14 534 independent samples, all of European descent. Results None of the association signals the authors identified reach genome-wide levels of statistical significance, therefore stressing the need for corroboration in sample sets of a larger size. Application of analytical approaches to examine the allelic architecture of disease to the stage 1 genome-wide association scan data suggests that osteoarthritis is a highly polygenic disease with multiple risk variants conferring small effects. Conclusions Identifying loci conferring susceptibility to osteoarthritis will require large-scale sample sizes and well-defined phenotypes to minimise heterogeneity.

Collaboration


Dive into the Ingrid Meulenbelt's collaboration.

Top Co-Authors

Avatar

Margreet Kloppenburg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Y.F. Ramos

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

P. Eline Slagboom

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

P.E. Slagboom

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rob G. H. H. Nelissen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eline Slagboom

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

N. Lakenberg

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ana M. Valdes

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Nils Bomer

Loyola University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge