Ingrid Prikulis
University of Düsseldorf
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ingrid Prikulis.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Saurav Seshadri; Atsushi Kamiya; Yukako Yokota; Ingrid Prikulis; Shin Ichi Kano; Akiko Hayashi-Takagi; Amelia Stanco; Tae Yeon Eom; Sarada Rao; Koko Ishizuka; Philip C. Wong; Carsten Korth; E. S. Anton; Akira Sawa
Neuregulin-1 (NRG1) and Disrupted-in-Schizophrenia-1 (DISC1) are promising susceptibility factors for schizophrenia. Both are multifunctional proteins with roles in a variety of neurodevelopmental processes, including progenitor cell proliferation, migration, and differentiation. Here, we provide evidence linking these factors together in a single pathway, which is mediated by ErbB receptors and PI3K/Akt. We show that signaling by NRG1 and NRG2, but not NRG3, increase expression of an isoform of DISC1 in vitro. Receptors ErbB2 and ErbB3, but not ErbB4, are responsible for transducing this effect, and PI3K/Akt signaling is also required. In NRG1 knockout mice, this DISC1 isoform is selectively reduced during neurodevelopment. Furthermore, a similar decrease in DISC1 expression is seen in β-site amyloid precursor protein cleaving enzyme–1 (BACE1) knockout mice, in which NRG1/Akt signaling is reportedly impaired. In contrast to neuronal DISC1 that was reported and characterized, expression of DISC1 in other types of cells in the brain has not been addressed. Here we demonstrate that DISC1, like NRG and ErbB proteins, is expressed in neurons, astrocytes, oligodendrocytes, microglia, and radial progenitors. These findings may connect NRG1, ErbBs, Akt, and DISC1 in a common pathway, which may regulate neurodevelopment and contribute to susceptibility to schizophrenia.
The Journal of Neuroscience | 2008
S. Rutger Leliveld; Verian Bader; Philipp Hendriks; Ingrid Prikulis; Gustavo Sajnani; Jesús R. Requena; Carsten Korth
Disrupted-in-schizophrenia 1 (DISC1) and other genes have been identified recently as potential molecular players in chronic psychiatric diseases such as affective disorders and schizophrenia. A molecular mechanism of how these genes may be linked to the majority of sporadic cases of these diseases remains unclear. The chronic nature and irreversibility of clinical symptoms in a subgroup of these diseases prompted us to investigate whether proteins corresponding to candidate genes displayed subtle features of protein aggregation. Here, we show that in postmortem brain samples of a distinct group of patients with phenotypes of affective disorders or schizophrenia, but not healthy controls, significant fractions of DISC1 could be identified as cold Sarkosyl-insoluble protein aggregates. A loss-of-function phenotype could be demonstrated for insoluble DISC1 through abolished binding to a key DISC1 ligand, nuclear distribution element 1 (NDEL1): in human neuroblastoma cells, DISC1 formed expression-dependent, detergent-resistant aggregates that failed to interact with endogenous NDEL1. Recombinant (r) NDEL1 expressed in Escherichia coli selectively bound an octamer of an rDISC1 fragment but not dimers or high molecular weight multimers, suggesting an oligomerization optimum for molecular interactions of DISC1 with NDEL1. For DISC1-related sporadic psychiatric disease, we propose a mechanism whereby impaired cellular control over self-association of DISC1 leads to excessive multimerization and subsequent formation of detergent-resistant aggregates, culminating in loss of ligand binding, here exemplified by NDEL1. We conclude that the absence of oligomer-dependent ligand interactions of DISC1 can be associated with sporadic mental disease of mixed phenotypes.
Journal of Clinical Investigation | 2016
Steffen E. Storck; Sabrina Meister; Julius Nahrath; Julius N. Meißner; Nils Schubert; Alessandro Di Spiezio; Sandra Baches; Roosmarijn E. Vandenbroucke; Yvonne Bouter; Ingrid Prikulis; Carsten Korth; Sascha Weggen; Axel Heimann; Markus Schwaninger; Thomas A. Bayer; Claus U. Pietrzik
According to the neurovascular hypothesis, impairment of low-density lipoprotein receptor-related protein-1 (LRP1) in brain capillaries of the blood-brain barrier (BBB) contributes to neurotoxic amyloid-β (Aβ) brain accumulation and drives Alzheimers disease (AD) pathology. However, due to conflicting reports on the involvement of LRP1 in Aβ transport and the expression of LRP1 in brain endothelium, the role of LRP1 at the BBB is uncertain. As global Lrp1 deletion in mice is lethal, appropriate models to study the function of LRP1 are lacking. Moreover, the relevance of systemic Aβ clearance to AD pathology remains unclear, as no BBB-specific knockout models have been available. Here, we developed transgenic mouse strains that allow for tamoxifen-inducible deletion of Lrp1 specifically within brain endothelial cells (Slco1c1-CreER(T2) Lrp1(fl/fl) mice) and used these mice to accurately evaluate LRP1-mediated Aβ BBB clearance in vivo. Selective deletion of Lrp1 in the brain endothelium of C57BL/6 mice strongly reduced brain efflux of injected [125I] Aβ(1-42). Additionally, in the 5xFAD mouse model of AD, brain endothelial-specific Lrp1 deletion reduced plasma Aβ levels and elevated soluble brain Aβ, leading to aggravated spatial learning and memory deficits, thus emphasizing the importance of systemic Aβ elimination via the BBB. Together, our results suggest that receptor-mediated Aβ BBB clearance may be a potential target for treatment and prevention of Aβ brain accumulation in AD.
Biochemistry | 2009
S. Rutger Leliveld; Philipp Hendriks; Max Michel; Gustavo Sajnani; Verian Bader; Svenja V. Trossbach; Ingrid Prikulis; Rudolf Hartmann; Esther Jonas; Dieter Willbold; Jesús R. Requena; Carsten Korth
Genetic studies have established a role of disrupted-in-schizophrenia-1 (DISC1) in chronic mental diseases (CMD). Limited experimental data are available on the domain structure of the DISC1 protein although multiple interaction partners are known including a self-association domain within the middle part of DISC1 (residues 403-504). The DISC1 C-terminal domain is deleted in the original Scottish pedigree where DISC1 harbors two coiled-coil domains and disease-associated polymorphisms at 607 and 704, as well as the important nuclear distribution element-like 1 (NDEL1) binding site at residues 802-839. Here, we performed mutagenesis studies of the C-terminal domain of the DISC1 protein (residues 640-854) and analyzed the expressed constructs by biochemical and biophysical methods. We identified novel DISC1 self-association motifs and the necessity of their concerted action for orderly assembly: the region 765-854 comprising a coiled-coil domain is a dimerization domain and the region 668-747 an oligomerization domain; dimerization was found to be a prerequisite for orderly assembly of oligomers. Consistent with this, disease-associated polymorphism C704 displayed a slightly higher oligomerization propensity. The heterogeneity of DISC1 multimers in vitro was confirmed with a monoclonal antibody binding exclusively to HMW multimers. We also identified C-terminal DISC1 fragments in human brains, suggesting that C-terminal fragments could carry out DISC1-dependent functions. When the DISC1 C-terminal domain was transiently expressed in cells, it assembled into a range of soluble and insoluble multimers with distinct fractions selectively binding NDEL1, indicating functionality. Our results suggest that assembly of the C-terminal domain is controlled by distinct domains including the disease-associated polymorphism 704 and is functional in vivo.
Neuroreport | 1996
Reinhard Prior; Donatella D'Urso; Rainer Frank; Ingrid Prikulis; Goran Pavlakovic
Cerebral amyloid angiopathy (CAA) is a neuropathological feature of Alzeheimers disease and an important cause of cerebral haemorrhage in the elderly. CAA is characterized by the deposition of Alzheimer amyloid β protein (Aβ) in cerebral and leptomeningeal vessel walls. In order to study the effect of cerebrovascular Aβ deposits in vivo, living canine leptomeninges obtained from old dogs affected by CAA were analysed by confocal laser scanning microscopy after immunofluorescence staining for Aβ and viability staining with fluorescein diacetate (FDA). Simultaneous detection of the two signals showed a segmental loss of leptomeningeal vessel wall viability at some site of Aβ deposition. Many of the non-viable vessels segments were also dilated, suggesting that Aβ-induced vascular cell death creates the loci minores resistentiae for the development of cerebral haemorrhage in CAA.
Journal of Virology | 2011
Benjamin Petsch; Andreas Müller-Schiffmann; Anna Lehle; Elizabeta Zirdum; Ingrid Prikulis; Franziska Kuhn; Alex J. Raeber; James Ironside; Carsten Korth; Lothar Stitz
ABSTRACT The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrPSc) of the normal and ubiquitous prion protein PrPC. The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp0/0 ) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrPSc or for both PrPC and PrPSc. PrPSc-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrPSc-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrPSc and PrPC, did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrPSc elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrPSc-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.
Amyloid | 2013
Nicolaas A. Verwey; Jeroen J.M. Hoozemans; Carsten Korth; Marloes R. van Royen; Ingrid Prikulis; Dorine Wouters; Harry Twaalfhoven; Elise S. van Haastert; Dale Schenk; Philip Scheltens; Annemieke Rozemuller; Marinus A. Blankenstein; Robert Veerhuis
Abstract Amyloid β-peptide (Aβ) is a key molecule in Alzheimer’s disease (AD). Reliable immunohistochemical (IHC) methods to detect Aβ and Aβ-associated factors (AAF) in brain specimens are needed to determine their role in AD pathophysiology. Formic acid (FA) pre-treatment, which is generally used to enable efficient detection of Aβ with IHC, induces structural modifications within the Aβ, as well as in AAF. Consequently, interpretation of double IHC stainings becomes difficult. Therefore, serial stainings of two newly produced monoclonal antibodies (mAbs) VU-17 and IC16 and two other mAbs (6E10 and 3D6) were performed with four different pre-treatments (no pre-treatment, Tris/EDTA, citrate and FA) and additionally six IHC characteristics were scored: diffuse/compact/classic plaques, arteries with cerebral Aβ angiopathy, dyshoric angiopathy, capillaries with dyshoric angiopathy. Subsequently, these stainings were compared with IHC procedures, which are frequently used in a diagnostic setting, employing mAbs 4G8 and 6F/3D with FA pre-treatment. IHC Aβ patterns obtained with VU-17 and, IC16 and 3D6 without the use of FA pre-treatment were comparable to those obtained with 4G8 and 6F/3D upon FA pre-treatment. Omission of FA pre-treatment gives the advantage to allow double IHC stainings, detecting both Aβ and AAF that otherwise would have been structural modificated upon FA pre-treatment.
Neuroreport | 1995
Reinhard Prior; Donatella D'Urso; Rainer Frank; Ingrid Prikulis; Goran Pavlakovic
To study the pathogenesis of cerebral amyloid angiopathy (CAA), organ cultures of canine leptomeninges were incubated with fluorescein-conjugated amyloid β- protein (FAβ, residues 1–40; 10 nM to 200 μM). Fluorescence microscopy showed focal and dose-dependent FAβ binding to blood vessels affected by CAA at FAβ- concentrations as low as 10nM. The new Aβ deposits appeared to be extracellular and were localized to the middle and outer layers of leptomeningeal arterioles. FAβ partially co-localized with apolipoprotein E (ApoE) as revealed by confocal microscopy, suggesting that Aβ in situ binds to ApoE. Young dogs or old dogs without CAA showed no deposition of FAβ. Our results indicate that after initiation of CAA pathology, physiological concentrations of soluble Aβ are sufficient to sustain its further deposition and therefore the progression of CAA.
PLOS ONE | 2014
Nicholas J. Bradshaw; Verian Bader; Ingrid Prikulis; Angelika Lueking; Stefan Müllner; Carsten Korth
We have previously proposed that specific proteins may form insoluble aggregates as a response to an illness-specific proteostatic dysbalance in a subset of brains from individuals with mental illness, as is the case for other chronic brain conditions. So far, established risk factors DISC1 and dysbindin were seen to specifically aggregate in a subset of such patients, as was a novel schizophrenia-related protein, CRMP1, identified through a condition-specific epitope discovery approach. In this process, antibodies are raised against the pooled insoluble protein fractions (aggregomes) of post mortem brain samples from schizophrenia patients, followed by epitope identification and confirmation using additional techniques. Pursuing this epitope discovery paradigm further, we reveal TRIO binding protein (TRIOBP) to be a major substrate of a monoclonal antibody with a high specificity to brain aggregomes from patients with chronic mental illness. TRIOBP is a gene previously associated with deafness which encodes for several distinct protein species, each involved in actin cytoskeletal dynamics. The 3′ splice variant TRIOBP-1 is found to be the antibody substrate and has a high aggregation propensity when over-expressed in neuroblastoma cells, while the major 5′ splice variant, TRIOBP-4, does not. Endogenous TRIOBP-1 can also spontaneously aggregate, doing so to a greater extent in cell cultures which are post-mitotic, consistent with aggregated TRIOBP-1 being able to accumulate in the differentiated neurons of the brain. Finally, upon expression in Neuroscreen-1 cells, aggregated TRIOBP-1 affects cell morphology, indicating that TRIOBP-1 aggregates may directly affect cell development, as opposed to simply being a by-product of other processes involved in major mental illness. While further experiments in clinical samples are required to clarify their relevance to chronic mental illness in the general population, TRIOBP-1 aggregates are thus implicated for the first time as a biological element of the neuropathology of a subset of chronic mental illness.
Journal of Neuroscience Methods | 1996
Reinhard Prior; Donatella D'Urso; Rainer Frank; Ingrid Prikulis; Günther Wihl; Goran Pavlakovic
Cerebral amyloid angiopathy (CAA) is a neuropathological feature of Alzheimers disease and a common cause of cerebral hemorrhage in the elderly. The pathogenetic mechanisms leading to the deposition of Alzheimer amyloid beta-protein (A beta) in cortical and leptomeningeal vessel walls are unknown. There are no experimental models which reproduce the pathological changes of CAA. In this study, leptomeninges from young and old dogs with pre-existing CAA were cultured in cell culture medium or cerebrospinal fluid and their viability, histological appearance and metabolic activity were analyzed during the culture. In addition, living leptomeninges of old and young dogs were incubated with fluorescein-conjugated A beta and the uptake of A beta was studied by fluorescence microscopy. Leptomeninges from young and old dogs were viable up to 8 weeks in culture. They contain many small- and medium-sized arterioles, the main vessel type affected by CAA. Histology and immunohistochemistry showed excellent preservation of the vessel wall microarchitecture up to 4 weeks in culture. The cultures were metabolically active as shown by the de novo production of beta-amyloid precursor protein. Exogenously added A beta was focally deposited in the vessel walls of old, but not young dogs. In conclusion, the organ culture of canine leptomeninges is easy to perform and appears suitable to investigate the pathogenesis and the progression of CAA.