Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid Reiser is active.

Publication


Featured researches published by Ingrid Reiser.


Medical Physics | 2009

Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image‐reconstruction algorithms

Emil Y. Sidky; Xiaochuan Pan; Ingrid Reiser; Robert M. Nishikawa; Richard H. Moore; Daniel B. Kopans

PURPOSE The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). METHODS The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p = 1.0 or the image roughness when p = 2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. RESULTS The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. CONCLUSIONS Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.


Medical Physics | 2006

Computerized mass detection for digital breast tomosynthesis directly from the projection images

Ingrid Reiser; Robert M. Nishikawa; Maryellen L. Giger; Tao Wu; Elizabeth A. Rafferty; Richard H. Moore; Daniel B. Kopans

Digital breast tomosynthesis (DBT) has recently emerged as a new and promising three-dimensional modality in breast imaging. In DBT, the breast volume is reconstructed from 11 projection images, taken at source angles equally spaced over an arc of 50 degrees. Reconstruction algorithms for this modality are not fully optimized yet. Because computerized lesion detection in the reconstructed breast volume will be affected by the reconstruction technique, we are developing a novel mass detection algorithm that operates instead on the set of raw projection images. Mass detection is done in three stages. First, lesion candidates are obtained for each projection image separately, using a mass detection algorithm that was initially developed for screen-film mammography. Second, the locations of a lesion candidate are backprojected into the breast volume. In this feature volume, voxel intensities are a combined measure of detection frequency (e.g., the number of projections in which a given lesion candidate was detected), and a measure of the angular range over which a given lesion was detected. Third, features are extracted after reprojecting the three-dimensional (3-D) locations of lesion candidates into projection images. Features are combined using linear discriminant analysis. The database used to test the algorithm consisted of 21 mass cases (13 malignant, 8 benign) and 15 cases without mass lesions. Based on this database, the algorithm yielded a sensitivity of 90% at 1.5 false positives per breast volume. Algorithm performance is positively biased because this dataset was used for development, training, and testing, and because the number of algorithm parameters was approximately the same as the number.of patient cases. Our results indicate that computerized mass detection in the sequence of projection images for DBT may be effective despite the higher noise level in those images.


Medical Physics | 2008

Automated detection of microcalcification clusters for digital breast tomosynthesis using projection data only: A preliminary study

Ingrid Reiser; Robert M. Nishikawa; Alexandra Edwards; Daniel B. Kopans; Robert A. Schmidt; John Papaioannou; Richard H. Moore

Digital breast tomosynthesis (DBT) is a promising modality for breast imaging in which an anisotropic volume image of the breast is obtained. We present an algorithm for computerized detection of microcalcification clusters (MCCs) for DBT. This algorithm operates on the projection views only. Therefore it does not depend on reconstruction, and is computationally efficient. The algorithm was developed using a database of 30 image sets with microcalcifications, and a control group of 30 image sets without visible findings. The patient data were acquired on the first DBT prototype at Massachusetts General Hospital. Algorithm sensitivity was estimated to be 0.86 at 1.3 false positive clusters, which is below that of current MCC detection algorithms for full-field digital mammography. Because of the small number of patient cases, algorithm parameters were not optimized and one linear classifier was used. An actual limitation of our approach may be that the signal-to-noise ratio in the projection images is too low for microcalcification detection. Furthermore, the database consisted of predominantly small MCC. This may be related to the image quality obtained with this first prototype.


Medical Physics | 2009

Comparison of power spectra for tomosynthesis projections and reconstructed images

Emma Engström; Ingrid Reiser; Robert M. Nishikawa

Burgess et al. [Med. Phys. 28, 419-437 (2001)] showed that the power spectrum of mammographic breast background follows a power law and that lesion detectability is affected by the power-law exponent beta which measures the amount of structure in the background. Following the study of Burgess et al., the authors measured and compared the power-law exponent of mammographic backgrounds in tomosynthesis projections and reconstructed slices to investigate the effect of tomosynthesis imaging on background structure. Our data set consisted of 55 patient cases. For each case, regions of interest (ROIs) were extracted from both projection images and reconstructed slices. The periodogram of each ROI was computed by taking the squared modulus of the Fourier transform of the ROI. The power-law exponent was determined for each periodogram and averaged across all ROIs extracted from all projections or reconstructed slices for each patient data set. For the projections, the mean beta averaged across the 55 cases was 3.06 (standard deviation of 0.21), while it was 2.87 (0.24) for the corresponding reconstructions. The difference in beta for a given patient between the projection ROIs and the reconstructed ROIs averaged across the 55 cases was 0.194, which was statistically significant (p < 0.001). The 95% CI for the difference between the mean value of beta for the projections and reconstructions was [0.170, 0.218]. The results are consistent with the observation that the amount of breast structure in the tomosynthesis slice is reduced compared to projection mammography and that this may lead to improved lesion detectability.


Technology in Cancer Research & Treatment | 2004

Computerized detection of mass lesions in digital breast tomosynthesis images using two- and three dimensional radial gradient index segmentation.

Ingrid Reiser; Robert M. Nishikawa; Maryellen L. Giger; Tao Wu; Elizabeth A. Rafferty; Richard H. Moore; Daniel B. Kopans

Initial results for a computerized mass lesion detection scheme for digital breast tomosynthesis (DBT) images are presented. The algorithm uses a radial gradient index feature for the initial lesion detection and for segmentation of lesion candidates. A set of features is extracted for each segmented partition. Performance of two- and three dimensional features was compared. For gradient features, the additional dimension provided no improvement in classification performance. For shape features, classification using 3D features was improved compared to the 2D equivalent features. The preliminary overall performance was 76% sensitivity at 11 false positives per exam, estimated based on DBT image data of 21 masses. A larger database will allow for further development and improvement in our computer aided detection scheme.


Medical Physics | 2012

A statistically defined anthropomorphic software breast phantom

Beverly A. Lau; Ingrid Reiser; Robert M. Nishikawa; Predrag R. Bakic

PURPOSE Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. METHODS Phantoms with (0.5 mm)(3) voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm)(3) voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm(2) regions of interest. RESULTS Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. CONCLUSIONS Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable with published values for breast tissue in x-ray projection modalities. The combination of conspicuous linear structures and binarized power-law noise added to a limited area of the phantom qualitatively improves its realism.


Medical Physics | 2006

Identification of simulated microcalcifications in white noise and mammographic backgrounds

Ingrid Reiser; Robert M. Nishikawa

This work investigates human performance in discriminating between differently shaped simulated microcalcifications embedded in white noise or mammographic backgrounds. Human performance was determined through two alternative forced-choice (2-AFC) experiments. The signals used were computer-generated simple shapes that were designed such that they had equal signal energy. This assured equal detectability. For experiments involving mammographic backgrounds, signals were blurred to account for the imaging system modulation transfer function (MTF). White noise backgrounds were computer generated; anatomic background patches were extracted from normal mammograms. We compared human performance levels as a function of signal energy in the expected difference template. In the discrimination task, the expected difference template is the difference between the two signals shown. In white noise backgrounds, human performance in the discrimination task was degraded compared to the detection task. In mammographic backgrounds, human performance in the discrimination task exceeded that of the detection task. This indicates that human observers do not follow the optimum decision strategy of correlating the expected signal template with the image. Human observer performance was qualitatively reproduced by non-prewhitening with eye filter (NPWE) model observer calculations, in which spatial uncertainty was explicitly included by shifting the locations of the expected difference templates. The results indicate that human strategy in the discrimination task may be to match individual signal templates with the image individually, rather than to perform template matching between the expected difference template and the image.


Journal of medical imaging | 2014

Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

Emil Y. Sidky; David N. Kraemer; Erin G. Roth; Christer Ullberg; Ingrid Reiser; Xiaochuan Pan

Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.


Medical Physics | 2011

On the orientation of mammographic structure.

Ingrid Reiser; S. Lee; Robert M. Nishikawa

PURPOSE Burgess et al. have shown that the power-spectral density of mammographic breast tissue P(f) follows a power-law, P(f) = c∕f(β).(1) Due to the complexity of the breast anatomy, breast phantoms often make use of power-law backgrounds to approximate the irregular texture of breast images. However, the current methodology of estimating power-law coefficients assumes that the breast structure is isotropic. The purpose of this letter is to demonstrate that breast anatomic structure is not isotropic, but in fact has a preferred orientation. Further, we present a formalism to estimate power-law coefficients β and c while accounting for tissue orientation in mammographic regions-of-interests (ROIs). We then show the effect of structure orientation on β and c, as well as on the appearance of simulated power-law backgrounds. METHODS When breast tissue exhibits a preferred orientation, the radial symmetry in the associated power spectrum is broken. The new symmetry was fit by an ellipsoidal model. Ellipse tilt angle and axis ratio were accounted for in the power-law fit. RESULTS On average, breast structure was found to point toward the nipple: the average orientation in MLO views was 22.5 °, while it was 5 ° for CC views, and the mean orientation for left breasts was negative while it was positive for right breasts. For both power-law magnitude and exponent, the mean difference was statistically significant ( = -0.096,  =-0.192). CONCLUSIONS A formalism for quantification of breast structure and structure orientation is provided. The difference in power-law coefficient estimates when accounting for orientation was found to be statistically significant. Examples of statistically defined backgrounds indicate that breast structure is mimicked more closely when structure orientation is accounted for.


Medical Imaging 2008: Physics of Medical Imaging | 2008

Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization

Emil Y. Sidky; Ingrid Reiser; Robert M. Nishikawa; Xiaochuan Pan; Rick Chartrand; Daniel B. Kopans; Richard H. Moore

Digital breast tomosynthesis (DBT) is a rapidly developing imaging modality that gives some tomographic information for breast cancer screening. The effectiveness of standard mammography can be limited by the presence of overlapping structures in the breast. A DBT scan, consisting of a limited number of views covering a limited arc projecting the breast onto a fixed flat-panel detector, involves only a small modification of digital mammography, yet DBT yields breast image slices with reduced interference from overlapping breast tissues. We have recently developed an iterative image reconstruction algorithm for DBT based on image total variation (TV) minimization that improves on EM in that the resulting images have fewer artifacts and there is no need for additional regularization. In this abstract, we present the total p-norm variation (TpV) image reconstruction algorithm. TpV has the advantages of our previous TV algorithm, while improving substantially on the efficiency. Results for the TpV on clinical data are shown and compared with EM.

Collaboration


Dive into the Ingrid Reiser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Boone

University of California

View shared research outputs
Top Co-Authors

Avatar

Z Lu

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge