Inja Waldhauer
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inja Waldhauer.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Claudia Ferrara; Sandra Grau; Christiane Jäger; Peter Sondermann; Peter Brünker; Inja Waldhauer; Michael Hennig; Armin Ruf; Arne C. Rufer; Martine Stihle; Pablo Umana; Jörg Benz
Antibody-mediated cellular cytotoxicity (ADCC), a key immune effector mechanism, relies on the binding of antigen–antibody complexes to Fcγ receptors expressed on immune cells. Antibodies lacking core fucosylation show a large increase in affinity for FcγRIIIa leading to an improved receptor-mediated effector function. Although afucosylated IgGs exist naturally, a next generation of recombinant therapeutic, glycoenginereed antibodies is currently being developed to exploit this finding. In this study, the crystal structures of a glycosylated Fcγ receptor complexed with either afucosylated or fucosylated Fc were determined allowing a detailed, molecular understanding of the regulatory role of Fc-oligosaccharide core fucosylation in improving ADCC. The structures reveal a unique type of interface consisting of carbohydrate–carbohydrate interactions between glycans of the receptor and the afucosylated Fc. In contrast, in the complex structure with fucosylated Fc, these contacts are weakened or nonexistent, explaining the decreased affinity for the receptor. These findings allow us to understand the higher efficacy of therapeutic antibodies lacking the core fucose and also suggest a unique mechanism by which the immune system can regulate antibody-mediated effector functions.
Molecular Cancer Therapeutics | 2013
Sylvia Herter; Frank Herting; Olaf Mundigl; Inja Waldhauer; Tina Weinzierl; Tanja Fauti; Gunter Muth; Doris Ziegler-Landesberger; Erwin van Puijenbroek; Sabine Lang; Minh Ngoc Duong; Lina Reslan; Christian Gerdes; Thomas Friess; Ute Baer; Helmut Burtscher; Michael Weidner; Charles Dumontet; Pablo Umana; Gerhard Niederfellner; Marina Bacac; Christian Klein
We report the first preclinical in vitro and in vivo comparison of GA101 (obinutuzumab), a novel glycoengineered type II CD20 monoclonal antibody, with rituximab and ofatumumab, the two currently approved type I CD20 antibodies. The three antibodies were compared in assays measuring direct cell death (AnnexinV/PI staining and time-lapse microscopy), complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), and internalization. The models used for the comparison of their activity in vivo were SU-DHL4 and RL xenografts. GA101 was found to be superior to rituximab and ofatumumab in the induction of direct cell death (independent of mechanical manipulation required for cell aggregate disruption formed by antibody treatment), whereas it was 10 to 1,000 times less potent in mediating CDC. GA101 showed superior activity to rituximab and ofatumumab in ADCC and whole-blood B-cell depletion assays, and was comparable with these two in ADCP. GA101 also showed slower internalization rate upon binding to CD20 than rituximab and ofatumumab. In vivo, GA101 induced a strong antitumor effect, including complete tumor remission in the SU-DHL4 model and overall superior efficacy compared with both rituximab and ofatumumab. When rituximab-pretreated animals were used, second-line treatment with GA101 was still able to control tumor progression, whereas tumors escaped rituximab treatment. Taken together, the preclinical data show that the glyoengineered type II CD20 antibody GA101 is differentiated from the two approved type I CD20 antibodies rituximab and ofatumumab by its overall preclinical activity, further supporting its clinical investigation. Mol Cancer Ther; 12(10); 2031–42. ©2013 AACR.
Journal of Autoimmunity | 2015
Charles Jm Bell; Yongliang Sun; Urszula M Nowak; Jan Clark; Sarah Howlett; Marcin L. Pekalski; Xin Yang; Oliver Ast; Inja Waldhauer; Anne Freimoser-Grundschober; Ekkehard Moessner; Pablo Umana; Christian Klein; Ralf Hosse; Linda S. Wicker; Laurence B. Peterson
Regulatory T cells (Tregs) expressing FOXP3 are essential for the maintenance of self-tolerance and are deficient in many common autoimmune diseases. Immune tolerance is maintained in part by IL-2 and deficiencies in the IL-2 pathway cause reduced Treg function and an increased risk of autoimmunity. Recent studies expanding Tregs in vivo with low-dose IL-2 achieved major clinical successes highlighting the potential to optimize this pleiotropic cytokine for inflammatory and autoimmune disease indications. Here we compare the clinically approved IL-2 molecule, Proleukin, with two engineered IL-2 molecules with long half-lives owing to their fusion in monovalent and bivalent stoichiometry to a non-FcRγ binding human IgG1. Using nonhuman primates, we demonstrate that single ultra-low doses of IL-2 fusion proteins induce a prolonged state of in vivo activation that increases Tregs for an extended period of time similar to multiple-dose Proleukin. One of the common pleiotropic effects of high dose IL-2 treatment, eosinophilia, is eliminated at doses of the IL-2 fusion proteins that greatly expand Tregs. The long half-lives of the IL-2 fusion proteins facilitated a detailed characterization of an IL-2 dose response driving Treg expansion that correlates with increasingly sustained, suprathreshold pSTAT5a induction and subsequent sustained increases in the expression of CD25, FOXP3 and Ki-67 with retention of Treg-specific epigenetic signatures at FOXP3 and CTLA4.
Molecular Cancer Therapeutics | 2016
Peter Brünker; Katharina Wartha; Thomas Friess; Sandra Grau-Richards; Inja Waldhauer; Claudia Ferrara Koller; Barbara Weiser; Meher Majety; Valeria Runza; Huifeng Niu; Kathryn Packman; Ningping Feng; Sherif Daouti; Ralf Hosse; Ekkehard Mössner; Thomas G. Weber; Frank Herting; Werner Scheuer; Hadassah Sade; Cuiying Shao; Bin Liu; Peng Wang; Gary Xu; Suzana Vega-Harring; Christian Klein; Klaus Bosslet; Pablo Umana
Dysregulated cellular apoptosis and resistance to cell death are hallmarks of neoplastic initiation and disease progression. Therefore, the development of agents that overcome apoptosis dysregulation in tumor cells is an attractive therapeutic approach. Activation of the extrinsic apoptotic pathway is strongly dependent on death receptor (DR) hyperclustering on the cell surface. However, strategies to activate DR5 or DR4 through agonistic antibodies have had only limited clinical success. To pursue an alternative approach for tumor-targeted induction of apoptosis, we engineered a bispecific antibody (BsAb), which simultaneously targets fibroblast-activation protein (FAP) on cancer-associated fibroblasts in tumor stroma and DR5 on tumor cells. We hypothesized that bivalent binding to both FAP and DR5 leads to avidity-driven hyperclustering of DR5 and subsequently strong induction of apoptosis in tumor cells but not in normal cells. Here, we show that RG7386, an optimized FAP-DR5 BsAb, triggers potent tumor cell apoptosis in vitro and in vivo in preclinical tumor models with FAP-positive stroma. RG7386 antitumor efficacy was strictly FAP dependent, was independent of FcR cross-linking, and was superior to conventional DR5 antibodies. In combination with irinotecan or doxorubicin, FAP-DR5 treatment resulted in substantial tumor regression in patient-derived xenograft models. FAP-DR5 also demonstrated single-agent activity against FAP-expressing malignant cells, due to cross-binding of FAP and DR5 across tumor cells. Taken together, these data demonstrate that RG7386, a novel and potent antitumor agent in both mono- and combination therapies, overcomes limitations of previous DR5 antibodies and represents a promising approach to conquer tumor-associated resistance to apoptosis. Mol Cancer Ther; 15(5); 946–57. ©2016 AACR.
OncoImmunology | 2017
Christian Klein; Inja Waldhauer; Valeria Nicolini; Anne Freimoser-Grundschober; Tapan Nayak; Danielle J. Vugts; Claire Dunn; Marije Bolijn; Jörg Benz; Martine Stihle; Sabine Lang; Michaele Roemmele; Thomas Hofer; Erwin van Puijenbroek; David Wittig; Samuel Moser; Oliver Ast; Peter Brünker; Ingo H. Gorr; Sebastian Neumann; Maria Cristina de Vera Mudry; Heather Hinton; Flavio Crameri; Jose Saro; Stefan Evers; Christian Gerdes; Marina Bacac; Guus van Dongen; Ekkehard Moessner; Pablo Umana
ABSTRACT We developed cergutuzumab amunaleukin (CEA-IL2v, RG7813), a novel monomeric CEA-targeted immunocytokine, that comprises a single IL-2 variant (IL2v) moiety with abolished CD25 binding, fused to the C-terminus of a high affinity, bivalent carcinoembryonic antigen (CEA)-specific antibody devoid of Fc-mediated effector functions. Its molecular design aims to (i) avoid preferential activation of regulatory T-cells vs. immune effector cells by removing CD25 binding; (ii) increase the therapeutic index of IL-2 therapy by (a) preferential retention at the tumor by having a lower dissociation rate from CEA-expressing cancer cells vs. IL-2R-expressing cells, (b) avoiding any FcγR-binding and Fc effector functions and (c) reduced binding to endothelial cells expressing CD25; and (iii) improve the pharmacokinetics, and thus convenience of administration, of IL-2. The crystal structure of the IL2v-IL-2Rβγ complex was determined and CEA-IL2v activity was assessed using human immune effector cells. Tumor targeting was investigated in tumor-bearing mice using 89Zr-labeled CEA-IL2v. Efficacy studies were performed in (a) syngeneic mouse models as monotherapy and combined with anti-PD-L1, and in (b) xenograft mouse models in combination with ADCC-mediating antibodies. CEA-IL2v binds to CEA with pM avidity but not to CD25, and consequently did not preferentially activate Tregs. In vivo, CEA-IL2v demonstrated superior pharmacokinetics and tumor targeting compared with a wild-type IL-2-based CEA immunocytokine (CEA-IL2wt). CEA-IL2v strongly expanded NK and CD8+ T cells, skewing the CD8+:CD4+ ratio toward CD8+ T cells both in the periphery and in the tumor, and mediated single agent efficacy in syngeneic MC38-CEA and PancO2-CEA models. Combination with trastuzumab, cetuximab and imgatuzumab, all of human IgG1 isotype, resulted in superior efficacy compared with the monotherapies alone. Combined with anti-PD-L1, CEA-IL2v mediated superior efficacy over the respective monotherapies, and over the combination with an untargeted control immunocytokine. These preclinical data support the ongoing clinical investigation of the cergutuzumab amunaleukin immunocytokine with abolished CD25 binding for the treatment of CEA-positive solid tumors in combination with PD-L1 checkpoint blockade and ADCC competent antibodies.
Cancer Immunology, Immunotherapy | 2017
Sylvia Herter; Laura Morra; Ramona Schlenker; Jitka Sulcova; Linda Fahrni; Inja Waldhauer; Steffi Lehmann; Timo Reisländer; Irina Agarkova; Jens M. Kelm; Christian Klein; Pablo Umana; Marina Bacac
The complexity of the tumor microenvironment is difficult to mimic in vitro, particularly regarding tumor–host interactions. To enable better assessment of cancer immunotherapy agents in vitro, we developed a three-dimensional (3D) heterotypic spheroid model composed of tumor cells, fibroblasts, and immune cells. Drug targeting, efficient stimulation of immune cell infiltration, and specific elimination of tumor or fibroblast spheroid areas were demonstrated following treatment with a novel immunocytokine (interleukin-2 variant; IgG-IL2v) and tumor- or fibroblast-targeted T cell bispecific antibody (TCB). Following treatment with IgG-IL2v, activation of T cells, NK cells, and NKT cells was demonstrated by increased expression of the activation marker CD69 and enhanced cytokine secretion. The combination of TCBs with IgG-IL2v molecules was more effective than monotherapy, as shown by enhanced effects on immune cell infiltration; activation; increased cytokine secretion; and faster, more efficient elimination of targeted cells. This study demonstrates that the 3D heterotypic spheroid model provides a novel and versatile tool for in vitro evaluation of cancer immunotherapy agents and allows for assessment of additional aspects of the activity of cancer immunotherapy agents, including analysis of immune cell infiltration and drug targeting.
Clinical Cancer Research | 2016
Valeria Gonzalez-Nicolini; Sylvia Herter; Sabine Lang; Inja Waldhauer; Marina Bacac; Michaela Roemmele; Esther Bommer; Olivier Freytag; Erwin van Puijenbroek; Pablo Umana; Christian Gerdes
Purpose: Imgatuzumab (GA201) is a novel anti-EGFR mAb that is glycoengineered for enhanced antibody-dependent cellular cytotoxicity (ADCC). Future treatment schedules for imgatuzumab will likely involve the use of potentially immunosuppressive drugs, such as premedication therapies, to mitigate infusion reactions characteristic of mAb therapy and chemotherapy combination partners. Because of the strong immunologic component of mode of action of imgatuzumab, it is important to understand whether these drugs influence imgatuzumab-mediated ADCC and impact efficacy. Experimental Design: We performed a series of ADCC assays using human peripheral blood mononuclear cells that were first preincubated in physiologically relevant concentrations of commonly used premedication drugs and cancer chemotherapies. The ability of common chemotherapy agents to enhance the efficacy of imgatuzumab in vivo was then examined using orthotopic xenograft models of human cancer. Results: A majority of premedication and chemotherapy drugs investigated had no significant effect on the ADCC activity of imgatuzumab in vitro. Furthermore, enhanced in vivo efficacy was seen with imgatuzumab combination regimens compared with single-agent imgatuzumab, single-agent chemotherapy, or cetuximab combinations. Conclusions: These data indicate that medications currently coadministered with anti-EGFR therapies are unlikely to diminish the ADCC capabilities of imgatuzumab. Further studies using syngeneic models with functional adaptive T-cell responses are now required to fully understand how chemotherapy agents will influence a long-term response to imgatuzumab therapy. Thus, this study and future ones can provide a framework for designing imgatuzumab combination regimens with enhanced efficacy for investigation in phase II trials. Clin Cancer Res; 22(10); 2453–61. ©2015 AACR.
Cancer Research | 2013
Christian Klein; Inja Waldhauer; Valeria Nicolini; Claire Dunn; Anne Freimoser-Grundschober; Sylvia Herter; Edwin J. W. Geven; Otto C. Boerman; Tapan Nayak; Erwin van Puijenbroek; David Wittig; Samuel Moser; Oliver Ast; Peter Bruenker; Ralf Hosse; Sabine Lang; Sebastian Neumann; Hubert Kettenberger; Adelbert Grossmann; Ingo H. Gorr; Stefan Evers; Pavel Pisa; Jennifer Fretland; Victor Levitsky; Christian Gerdes; Marina Bacac; Ekkehard Moessner; Pablo Umana
IL-2 therapy can lead to durable responses in cancer patients, but is associated with significant toxicity. None of the described IL-2-based immunocytokines has progressed beyond Phase II trials due to various constraints in their design: 1) pM affinity for IL-2Rαβγ on immune cells and pulmonary vascular endothelium compromising tumor targeting due to the fusion of two wildtype IL-2 moieties to the antibody, together with FcγR binding on the same cells; 2) Rapid systemic clearance and short half-life due to high affinity IL-2Rαβγ binding; 3) Preferential activation of Tregs over immune effectors by wt IL-2. Here, we describe a novel monomeric tumor-targeted immunocytokine where a single, engineered IL-2 variant (IL-2v) with abolished IL-2Rα (CD25) binding is fused to the C-terminus of an antibody with a heterodimeric Fc-part. FcγR and C1q binding is completely abolished by a novel Fc mutation. For targeting, human(-ized) high affinity antibodies against CEA (GA504, CEA-IL2v) or FAP (GA501, FAP-IL2v) were selected. CEA- and FAP-IL2v were recombinantly produced and induction of P-STAT5, proliferation, activation induced cell death (AICD), activation markers and cytokines were determined on effector cells. Safety, pharmacokinetics (PK), tumor targeting, pharmacodynamics and anti-tumor efficacy were analyzed in SCID and immunocompetent C57Bl/6 mice. FAP- and CEA-IL-2v completely lack binding to CD25, but retain IL-Rβγ binding. They do not bind to CD25 or preferentially activate Tregs, and induce lower degree of AICD. However, IL-2Rβγ bioactivity is retained and they activate NK, CD4+ and CD8+ T cells as shown by induction of activation markers and proliferation. In particular, CEA- and FAP-IL2v expand and activate NK cells and skew the CD4:CD8 ratio towards CD8+ T cells in vivo. In C57Bl/6 mice, CEA- and FAP-IL2v demonstrate improved safety despite of higher exposure and circulatory half-life than the corresponding wt IL-2 immunocytokine. MicroSPECT/CT imaging revealed FAP-mediated tumor targeting of FAP-IL2v with low normal tissue uptake with FAP-IL2v tumor targeting being similar to the parental FAP antibody with low accumulation in lymphoid tissues and clearly superior to an FAP-targeted wt IL-2 immunocytokine that shows preferential spleen targeting. Studies in tumor-bearing mice showed dose dependent anti-tumor efficacy of CEA- and FAP-IL2v in established xenograft and syngeneic mouse models. Thus, CEA- and FAP-IL2v demonstrate superior safety, PK and tumor targeting, while lacking preferential induction of Tregs due to abolished CD25 and FcγR binding, monovalency and high-affinity tumor-targeting as compared to classical immunocytokines. They retain capacity to activate NK and T‐effector cells through IL‐2Rβγ; in particular once targeted to the tumor microenvironment. These data support their investigation for the immunotherapy of CEA/FAP-positive tumors. Citation Format: Christian Klein, Inja Waldhauer, Valeria Nicolini, Claire Dunn, Anne Freimoser-Grundschober, Sylvia Herter, Edwin Geven, Otto Boerman, Tapan Nayak, Erwin van Puijenbroek, David Wittig, Samuel Moser, Oliver Ast, Peter Bruenker, Ralf Hosse, Sabine Lang, Sebastian Neumann, Hubert Kettenberger, Adelbert Grossmann, Ingo Gorr, Stefan Evers, Pavel Pisa, Jennifer Fretland, Victor Levitsky, Christian Gerdes, Marina Bacac, Ekkehard Moessner, Pablo Umana. Tumor-targeted, engineered IL-2 variant (IL-2v)-based immunocytokines for the immunotherapy of cancer. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 486. doi:10.1158/1538-7445.AM2013-486
Cancer Research | 2014
Valeria Nicolini; Inja Waldhauer; Anne Freimoser; Sara Colombetti; Federica Cavallo; Marina Bacac; Christian Gerdes; Pablo Umana; Christian Klein
We recently described a novel monomeric tumor-targeted CEA-IL2v immunocytokine. CEA-IL2v comprises a single IL-2 variant (IL2v) with abolished CD25 binding that is fused to the C-terminus of a humanized CEA antibody with a heterodimeric Fc devoid of FcγR and C1q binding. CEA-IL2v recognizes a membrane-proximal epitope of CEA. Here we show that CEA-IL-2v is able to enhance the activity of ADCC competent antibodies and glycoengineered IgG1 antibodies in vitro and in vivo. The combination of CEA-IL2v with ADCC-competent IgG1 antibodies was investigated in vitro in ADCC assays and in vivo in xenografts in hCD16a transgenic SCID mice that express hFcγRIIIα on NK cells and the homologous muFcγRIV on macrophages/monocytes. Antibodies tested include trastuzumab, cetuximab and the ADCC-enhanced glycoengineered EGFR antibody GA201. In the spontaneous genetically engineered BALB-neuT breast cancer mouse model a surrogate tumor stroma Tenascin C A2 (TNCA2)-targeted IL2v immunocytokine was used in combination with a ratHER2 antibody. PBMCs stimulated by CEA-IL2v in co-cultures with tumor cells showed dose-dependent elimination of tumor cells and activation of NK cells. Addition of trastuzumab or cetuximab resulted in induction of activation markers and enhanced killing of tumor cells. As a single agent, CEA-IL2v showed minor tumor growth inhibition in orthotopic i.m.f.p. KPL4 BC and s.c. N87 GC xenografts. The combination of CEA-IL2v (1 mg/kg, q7d×3) with trastuzumab (10 mg/kg in KPL4 and 25 mg/kg in N87, q7d×3) resulted in superior inhibition of tumor growth compared to the respective single-agent treatments, combination therapy induced 6/9 complete tumor remissions in N87 and 3/5 in KPL4. In the i.v. A549 lung cancer and i.s. LS174T CRC xenografts, single-agent CEA-IL2v showed a moderate effect on median survival, whereas the combination of CEA-IL2v (1 mg/kg, q7d×3) with cetuximab (25 mg/kg, q7d×3) increased median/overall survival. Similarly, in the i.v. A549 NSCLC and i.s. LS174T CRC xenografts, the combination of CEA-IL2v (1 mg/kg for A549 and 2 mg/kg for LS174T, q7d×3) with GA201 (25 mg/kg, q7d×3) resulted in superior median survival compared to the respective single-agent treatments with long term survival of 10/10 animals in the A549 model and survival of 2/8 animals in the LS174T model. Finally in the spontaneous GEM BALB-neuT breast cancer model the combination of TNCA2-IL2v with a ratHER2 IgG1 antibody resulted in a strong and significant reduction of tumor formation in 6/7 animals as compared to the respective single agents. Combining CEA-IL2v or TNCA2-IL2v with ADCC competent/enhanced IgG1 antibodies results in enhanced anti-tumor efficacy in xenografts and in a spontaneous immunocompetent genetically engineered BALB-neuT mouse model. These data support the clinical investigation of CEA-IL2v with ADCC competent/enhanced IgG1 antibodies. Citation Format: Valeria Nicolini, Inja Waldhauer, Anne Freimoser, Sara Colombetti, Federica Cavallo, Marina Bacac, Christian Gerdes, Pablo Umana, Christian Klein. Combination with the novel tumor-targeted CEA-IL2v immunocytokine enhances the activity of ADCC-competent and glycoengineered antibodies in vitro and in vivo . [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2579. doi:10.1158/1538-7445.AM2014-2579
Cancer Research | 2017
Christian Klein; Christiane Neumann; Tanja Fauti; Tina Weinzierl; Anne Freimoser-Grundschober; Inja Waldhauer; Linda Fahrni; Sylvia Herter; Erwin van Puijenbroek; Sara Colombetti; Johannes Sam; Sabine Lang; Sherri Dudal; Wolfgang Schäfer; Jörg T. Regula; Samuel Moser; Oliver Ast; Ralf Hosse; Ekkehard Mössner; Peter Brünker; Marina Bacac; Pablo Umana
T cell bispecific antibodies that recruit and engage T cells for tumor cell killing through binding to the T cell receptor (TCR) upon binding to a tumor antigen (TA) and subsequent crosslinking have attracted broad interest. Here, we describe a novel asymmetric head-to-tail 2+1 T cell bispecific antibody (2+1 TCB) platform characterized by the fusion of a flexible Fab fragment to the N-terminus of the CD3e Fab of a heterodimeric asymmetric bispecific TA-CD3e IgG1 antibody in head-to-tail geometry via a flexible linker. The resulting TCB is monovalent for CD3e (KD 70-100 nM) and binds bivalently with avidity to the TA on the target cell. Correct heavy chain pairing is enabled by knob-into-holes technology, correct light chain pairing by CrossMAb technology or using a common light chain. This enables production with standard processes in CHO cells. To exclude FcgR-mediated unspecific TCR and FcgR co-activation resulting in unspecific cytokine release, Fc- effector functions (ADCC, ADCP, CDC) are abolished by introduction of P329G LALA mutations while FcRn binding and IgG-like pharmacokinetic properties are retained as shown in mouse and Cynomolgus. For comparative profiling, the following TCBs were generated with specificity for the tumor antigens MCSP/CSPG4, FOLR1/FRalpha, CD19 and CD20: 2+1 TCBCD3-inside, 2+1 TCBCD3-outside, one-armed 1+1 TCBCD3-inside and a classical asymmetric 1+1 IgG TCB. In vitro Jurkat-NFAT, T cell killing, activation and proliferation assays show that both 2+1 TCB formats mediate superior potency of killing (for CSPG4, FOLR1, CD19, CD20) and superior absolute killing (for CSPG4, CD19) compared to the respective classical asymmetric 1+1 IgG TCB. Surprisingly, the 2+1 TCBCD3-inside format was found to be superior in potency compared to the 2+1 TCBCD3-outside format, although its binding affinity for CD3e is reduced. These data confirm that TCBs mediate extremely potent T cell killing with fM-pM EC50 values based on CD3e antibodies with affinities of only 70-100 nM. Notably, for CD19 both, 2+1 TCBCD3-inside and one-armed 1+1 TCBCD3-inside, mediate comparable potency and overall killing, and both were superior compared to the asymmetric 1+1 IgG TCB. These data underline the importance of the head-to-tail geometry with two Fabs on one arm attached to each other via a flexible G4S-linker. Finally, using 2+1 and 1+1 FOLR1 TCBs we demonstrate that bivalent binding allows better differentiation in killing of cells with high vs. low FOLR1 expression as compared to monovalent binding. Taken together, we demonstrate that the 2+1 TCBCD3-inside is the most potent, efficacious and versatile TCB design. Due to its orientation with the CD3e Fab inside, it allows the conversion of existing antibodies into potent TCBs without format restriction. Based on this platform, CEA CD3 TCB (RG7802, Phase I/Ib) and CD20 CD3 TCB (RG6026, Phase I) have entered clinical trials. Citation Format: Christian Klein, Christiane Neumann, Tanja Fauti, Tina Weinzierl, Anne Freimoser-Grundschober, Inja Waldhauer, Linda Fahrni, Sylvia Herter, Erwin van Puijenbroek, Sara Colombetti, Johannes Sam, Sabine Lang, Sherri Dudal, Wolfgang Schafer, Jorg T. Regula, Samuel Moser, Oliver Ast, Ralf Hosse, Ekkehard Mossner, Peter Brunker, Marina Bacac, Pablo Umana. Engineering a novel asymmetric head-to-tail 2+1 T-cell bispecific (2+1 TCB) IgG antibody platform with superior T-cell killing compared to 1+1 asymmetric TCBs [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3629. doi:10.1158/1538-7445.AM2017-3629