Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Injong Rhee is active.

Publication


Featured researches published by Injong Rhee.


Operating Systems Review | 2008

CUBIC: a new TCP-friendly high-speed TCP variant

Sangtae Ha; Injong Rhee; Lisong Xu

CUBIC is a congestion control protocol for TCP (transmission control protocol) and the current default TCP algorithm in Linux. The protocol modifies the linear window growth function of existing TCP standards to be a cubic function in order to improve the scalability of TCP over fast and long distance networks. It also achieves more equitable bandwidth allocations among flows with different RTTs (round trip times) by making the window growth to be independent of RTT -- thus those flows grow their congestion window at the same rate. During steady state, CUBIC increases the window size aggressively when the window is far from the saturation point, and the slowly when it is close to the saturation point. This feature allows CUBIC to be very scalable when the bandwidth and delay product of the network is large, and at the same time, be highly stable and also fair to standard TCP flows. The implementation of CUBIC in Linux has gone through several upgrades. This paper documents its design, implementation, performance and evolution as the default TCP algorithm of Linux.


international conference on computer communications | 2004

Binary increase congestion control (BIC) for fast long-distance networks

Lisong Xu; Khaled Harfoush; Injong Rhee

High-speed networks with large delays present a unique environment where TCP may have a problem utilizing the full bandwidth. Several congestion control proposals have been suggested to remedy this problem. The existing protocols consider mainly two properties: TCP friendliness and bandwidth scalability. That is, a protocol should not take away too much bandwidth from standard TCP flows while utilizing the full bandwidth of high-speed networks. This work presents another important constraint, namely, RTT (round trip time) unfairness where competing flows with different RTTs may consume vastly unfair bandwidth shares. Existing schemes have a severe RTT unfairness problem because the congestion window increase rate gets larger as the window grows ironically the very reason that makes them more scalable. RTT unfairness for high-speed networks occurs distinctly with drop tail routers for flows with large congestion windows where packet loss can be highly synchronized. After identifying the RTT unfairness problem of existing protocols, This work presents a new congestion control scheme that alleviates RTT unfairness while supporting TCP friendliness and bandwidth scalability. The proposed congestion control algorithm uses two window size control policies called additive increase and binary search increase. When the congestion window is large, additive increase with a large increment ensures square RTT unfairness as well as good scalability. Under small congestion windows, binary search increase supports TCP friendliness. The simulation results confirm these properties of the protocol.


IEEE ACM Transactions on Networking | 2011

On the levy-walk nature of human mobility

Injong Rhee; Minsu Shin; Seongik Hong; Kyunghan Lee; Seong Joon Kim; Song Chong

We report that human walk patterns contain statistically similar features observed in Levy walks. These features include heavy-tail flight and pause-time distributions and the super-diffusive nature of mobility. Human walks are not random walks, but it is surprising that the patterns of human walks and Levy walks contain some statistical similarity. Our study is based on 226 daily GPS traces collected from 101 volunteers in five different outdoor sites. The heavy-tail flight distribution of human mobility induces the super-diffusivity of travel, but up to 30 min to 1 h due to the boundary effect of peoples daily movement, which is caused by the tendency of people to move within a predefined (also confined) area of daily activities. These tendencies are not captured in common mobility models such as random way point (RWP). To evaluate the impact of these tendencies on the performance of mobile networks, we construct a simple truncated Levy walk mobility (TLW) model that emulates the statistical features observed in our analysis and under which we measure the performance of routing protocols in delay-tolerant networks (DTNs) and mobile ad hoc networks (MANETs). The results indicate the following. Higher diffusivity induces shorter intercontact times in DTN and shorter path durations with higher success probability in MANET. The diffusivity of TLW is in between those of RWP and Brownian motion (BM). Therefore, the routing performance under RWP as commonly used in mobile network studies and tends to be overestimated for DTNs and underestimated for MANETs compared to the performance under TLW.


international conference on embedded networked sensor systems | 2005

Z-MAC: a hybrid MAC for wireless sensor networks

Injong Rhee; Ajit Warrier; Mahesh Aia; Jeongki Min

This paper presents the design, implementation and performance evaluation of a hybrid MAC protocol, called Z-MAC, for wireless sensor networks that combines the strengths of TDMA and CSMA while offsetting their weaknesses. Like CSMA, Z-MAC achieves high channel utilization and low latency under low contention and like TDMA, achieves high channel utilization under high contention and reduces collision among two-hop neighbors at a low cost. A distinctive feature of Z-MAC is that its performance is robust to synchronization errors, slot assignment failures, and time-varying channel conditions; in the worst case, its performance always falls back to that of CSMA. Z-MAC is implemented in TinyOS.


international conference on computer communications | 2009

SLAW: A New Mobility Model for Human Walks

Kyunghan Lee; Seongik Hong; Seong Joon Kim; Injong Rhee; Song Chong

Simulating human mobility is important in mobile networks because many mobile devices are either attached to or controlled by humans and it is very hard to deploy real mobile networks whose size is controllably scalable for performance evaluation. Lately various measurement studies of human walk traces have discovered several significant statistical patterns of human mobility. Namely these include truncated power-law distributions of flights, pause-times and inter-contact times, fractal way-points, and heterogeneously defined areas of individual mobility. Unfortunately, none of existing mobility models effectively captures all of these features. This paper presents a new mobility model called SLAW (self-similar least action walk) that can produce synthetic walk traces containing all these features. This is by far the first such model. Our performance study using using SLAW generated traces indicates that SLAW is effective in representing social contexts present among people sharing common interests or those in a single community such as university campus, companies and theme parks. The social contexts are typically common gathering places where most people visit during their daily lives such as student unions, dormitory, street malls and restaurants. SLAW expresses the mobility patterns involving these contexts by fractal way points and heavy-tail flights on top of the way points. We verify through simulation that SLAW brings out the unique performance features of various mobile network routing protocols.


IEEE ACM Transactions on Networking | 2013

Mobile data offloading: how much can WiFi deliver?

Kyunghan Lee; Joohyun Lee; Yung Yi; Injong Rhee; Song Chong

This paper presents a quantitative study on the performance of 3G mobile data offloading through WiFi networks. We recruited 97 iPhone users from metropolitan areas and collected statistics on their WiFi connectivity during a two-and-a-halfweek period in February 2010. Our trace-driven simulation using the acquired whole-day traces indicates that WiFi already offloads about 65% of the total mobile data traffic and saves 55% of battery power without using any delayed transmission. If data transfers can be delayed with some deadline until users enter a WiFi zone, substantial gains can be achieved only when the deadline is fairly larger than tens of minutes. With 100-s delays, the achievable gain is less than only 2%-3%, whereas with 1 h or longer deadlines, traffic and energy saving gains increase beyond 29% and 20%, respectively. These results are in contrast to the substantial gain (20%-33%) reported by the existing work even for 100-s delayed transmission using traces taken from transit buses or war-driving. In addition, a distribution model-based simulator and a theoretical framework that enable analytical studies of the average performance of offloading are proposed. These tools are useful for network providers to obtain a rough estimate on the average performance of offloading for a given WiFi deployment condition.


mobile ad hoc networking and computing | 2006

DRAND: distributed randomized TDMA scheduling for wireless ad-hoc networks

Injong Rhee; Ajit Warrier; Jeongki Min; Lisong Xu

This paper presents a distributed implementation of RAND, a randomized time slot scheduling algorithm, called DRAND. DRAND runs in O(delta) time and message complexity where delta is the maximum size of a two-hop neighborhood in a wireless network while message complexity remains O(delta), assuming that message delays can be bounded by an unknown constant. DRAND is the first fully distributed version of RAND. The algorithm is suitable for a wireless network where most nodes do not move, such as wireless mesh networks and wireless sensor networks. We implement the algorithm in TinyOS and demonstrate its performance in a real testbed of Mica2 nodes. The algorithm does not require any time synchronization and is shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling. Because of these features, it can also be used even for other scheduling problems such as frequency or code scheduling (for FDMA or CDMA) or local identifier assignment for wireless networks where time synchronization is not enforced. We further evaluate the effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots. This experiment is conducted on a 55-node testbed consisting of the more recent MicaZ sensor nodes.


international conference on computer communications | 2008

On the Levy-Walk Nature of Human Mobility

Injong Rhee; Minsu Shin; Seongik Hong; Kyunghan Lee; Song Chong

We report that human walks performed in outdoor settings of tens of kilometers resemble a truncated form of Levy walks commonly observed in animals such as monkeys, birds and jackals. Our study is based on about one thousand hours of GPS traces involving 44 volunteers in various outdoor settings including two different college campuses, a metropolitan area, a theme park and a state fair. This paper shows that many statistical features of human walks follow truncated power-law, showing evidence of scale-freedom and do not conform to the central limit theorem. These traits are similar to those of Levy walks. It is conjectured that the truncation, which makes the mobility deviate from pure Levy walks, comes from geographical constraints including walk boundary, physical obstructions and traffic. None of commonly used mobility models for mobile networks captures these properties. Based on these findings, we construct a simple Levy walk mobility model which is versatile enough in emulating diverse statistical patterns of human walks observed in our traces. The model is also used to recreate similar power-law inter-contact time distributions observed in previous human mobility studies. Our network simulation indicates that the Levy walk features are important in characterizing the performance of mobile network routing performance.


international conference on computer communications | 2010

Towards Mobile Phone Localization without War-Driving

Ionut Constandache; Romit Roy Choudhury; Injong Rhee

This paper identifies the possibility of using electronic compasses and accelerometers in mobile phones, as a simple and scalable method of localization without war-driving. The idea is not fundamentally different from ship or air navigation systems, known for centuries. Nonetheless, directly applying the idea to human-scale environments is non-trivial. Noisy phone sensors and complicated human movements present practical research challenges. We cope with these challenges by recording a persons walking patterns, and matching it against possible path signatures generated from a local electronic map. Electronic maps enable greater coverage, while eliminating the reliance on WiFi infrastructure and expensive war-driving. Measurements on Nokia phones and evaluation with real users confirm the anticipated benefits. Results show a location accuracy of less than 11m in regions where todays localization services are unsatisfactory or unavailable.


IEEE Transactions on Mobile Computing | 2009

DRAND: Distributed Randomized TDMA Scheduling for Wireless Ad Hoc Networks

Injong Rhee; Ajit Warrier; Jeongki Min; Lisong Xu

This paper presents a distributed implementation of RAND, a randomized time slot scheduling algorithm, called DRAND. DRAND runs in O(delta) time and message complexity where delta is the maximum size of a two-hop neighborhood in a wireless network while message complexity remains O(delta), assuming that message delays can be bounded by an unknown constant. DRAND is the first fully distributed version of RAND. The algorithm is suitable for a wireless network where most nodes do not move, such as wireless mesh networks and wireless sensor networks. We implement the algorithm in TinyOS and demonstrate its performance in a real testbed of Mica2 nodes. The algorithm does not require any time synchronization and is shown to be effective in adapting to local topology changes without incurring global overhead in the scheduling. Because of these features, it can also be used even for other scheduling problems such as frequency or code scheduling (for FDMA or CDMA) or local identifier assignment for wireless networks where time synchronization is not enforced. We further evaluate the effect of the time-varying nature of wireless links on the conflict-free property of DRAND-assigned time slots. This experiment is conducted on a 55-node testbed consisting of the more recent MicaZ sensor nodes.

Collaboration


Dive into the Injong Rhee's collaboration.

Top Co-Authors

Avatar

Sangtae Ha

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Seongik Hong

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ajit Warrier

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Lisong Xu

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Yaogong Wang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeongki Min

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge