Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inmaculada Banegas is active.

Publication


Featured researches published by Inmaculada Banegas.


Journal of the Renin-Angiotensin-Aldosterone System | 2006

Review: Brain Aminopeptidases and Hypertension

Inmaculada Banegas; Isabel Prieto; Francisco Vives; Francisco Alba; Marc de Gasparo; Ana B. Segarra; Francisco Hermoso; Raquel Duran; Manuel Ramírez

The brain aminopeptidases that participate in the enzymatic cascade of the renin-angiotensin system play a major role in blood pressure (BP) control, and their study offers new perspectives for the understanding of central BP control and the treatment of hypertension. In this system, angiotensin II is converted to angiotensin III (Ang III) by glutamyl aminopeptidase (GluAP) and Ang III is further metabolised to angiotensin IV by alanyl aminopeptidase or arginine-aminopeptidase. It is now clear that Ang III is the key active form of the central angiotensins, exerting tonic stimulatory control over BP Therefore, the development of GluAP inhibitors as potential antihypertensive agents offers new perspectives for therapy. Brain aspartyl JR aminopeptidase, which converts angiotensin I to angiotensin 2-10, is also a possible target for antihypertensive therapy because of its potential role in BP control. Finally, since changes in BP levels, that paralleled changes in brain and plasma aminopeptidase activities, were observed after unilateral lesions of the nigrostriatal system, brain asymmetry, aminopeptidase activities and BP control appear to be related, resulting their interplay in an asymmetrical neuroendocrine response that differentially affect BP control.The study of this interaction may contribute to our understanding of how the brain controls BP


Neuropharmacology | 2009

Asymmetrical response of aminopeptidase A and nitric oxide in plasma of normotensive and hypertensive rats with experimental hemiparkinsonism.

Inmaculada Banegas; Isabel Prieto; Francisco Vives; Francisco Alba; Marc de Gasparo; Raquel Duran; Juan de Dios Luna; Ana B. Segarra; Francisco Hermoso; Manuel Ramírez

Aminopeptidases and dopamine (DA) exhibit asymmetries in the brain that are reflected in the peripheral response to unilateral striatal DA depletions (experimental hemiparkinsonism). This might be due to asymmetries in the autonomic innervation of the peripheral vessels. Nitric oxide (NO) is released through vascular sympathetic activation. A similar pathway could be postulated for aminopeptidases. Angiotensin II, metabolized by aminopeptidase A (AP A), interacts with NO and dopamine in the control of blood pressure. Moreover, plasma AP A activity and NO concentrations are elevated in hypertensive rats in which sympathetic activity is increased. We hypothesize that plasma AP A activity and NO concentrations may reflect a central asymmetry of the sympathetic activity. Therefore, we analyzed the effect of unilateral depletions of brain DA by injecting 6-hydroxydopamine into the left or right striatum and measuring plasma AP A, NO and systolic blood pressure (SBP) in normotensive and hypertensive rats. Changes in plasma AP A and NO in opposite directions may reflect an asymmetry in the function of the nigrostriatal system. Our results also revealed an inverse correlation between AP A and NO, in normotensive rats lesioned or sham operated in the right side and hypertensive rats lesioned in the left one. We concluded that the observed changes in plasma NO and AP A after left or right striatal DA depletions may be due to asymmetries in the peripheral autonomic innervation of the vessels.


Heart Failure Reviews | 2008

Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis

Manuel Ramírez; Isabel Prieto; Francisco Alba; Francisco Vives; Inmaculada Banegas; Marc de Gasparo

Although there is a large body of knowledge on protein synthesis, the available data on protein catabolism, although quite substantial, are still inadequate. This is due to the marked differences in the activity of proteolytic enzymes, compounded by different substrate specificities and multiple environmental factors. Understanding enzyme behavior under physiological and pathological conditions requires the identification of specific proteolytic activities, such as aminopeptidases, as able to degrade certain peptidergic hormones or neuropeptides. Another requirement is the isolation, purification and characterization of the enzymes involved. In addition, systematic studies are needed to determine each enzyme’s subcellular location, tissue distribution, and the influence of environmental factors such as diurnal rhythm, age, gender, diet, cholesterol, or steroids. Central and peripheral aminopeptidases may play a role in the control of blood pressure by coordinating the effect of the different peptides of the renin–angiotensin system cascade, acting through the AT1, AT2, and AT4 receptors. Our review of the available data suggests the hypothesis that cholesterol or steroids, particularly testosterone, significantly influence aminopeptidase activities, their substrate availability and consequently their functions. These observations may have relevant clinical implications for a better understanding of the pathophysiology of cardiovascular diseases, and thus for their treatment with aminopeptidase inhibitors.


Neuropsychobiology | 2009

Stress Influences Brain Enkephalinase, Oxytocinase and Angiotensinase Activities: A New Hypothesis

Joaquín Hernández; Ana B. Segarra; Manuel Ramírez; Inmaculada Banegas; M. de Gasparo; Francisco Alba; Francisco Vives; Raquel Duran; Isabel Prieto

Brain enkephalin and oxytocin are anxiolytic agents involved in the response mechanism to stress. Degrading enzymes such as enkephalinase and oxytocinase could also be associated with this response. The effect of acute immobilization stress on enkephalinase and oxytocinase activities was determined in the soluble and membrane fractions of the medial prefrontal cortex, hippocampus and amygdala using alanyl- and leucyl-beta-naphthylamide as substrates, the latter in the presence and absence of 20 mML-methionine. No change in aminopeptidase activities was observed in the prefrontal cortex of stressed rats. In contrast, enkephalinase activity decreased in the soluble fraction of the hippocampus but increased in the membrane fraction. In the amygdala, soluble oxytocinase and membrane enkephalinase activities decreased in stressed animals. These results show that acute immobilization stress affects differentially enkephalinase and oxytocinase activities depending on the fraction and brain region analyzed. A reduction in the activity of soluble enkephalinase in the hippocampus and soluble oxytocinase as well as membrane enkephalinase in the amygdala may suggest higher availability/longer action of enkephalin and oxytocin at these locations. This may explain the relative importance of these enzymatic activities in the anxiolytic properties proposed for enkephalins and oxytocin in the hippocampus and amygdala during stress conditions. This interpretation is not applicable to membrane enkephalinase activity in the hippocampus. However, alanyl-beta-naphthylamide hydrolyzing activity not only measures enkephalinase activity, it also reflects the angiotensinase-induced metabolism of angiotensin III to angiotensin IV. Therefore, our results may also mirror an increase in the formation of Ang IV in hippocampus and a decrease in the amygdala in acute stress. In conclusion, aminopeptidase activities in the hippocampus and amygdala may affect enkephalin, oxytocin and angiotensin III metabolism during acute immobilization stress and therefore be involved in the anxiolytic response.


Peptides | 2003

Angiotensinase activities in the kidney of renovascular hypertensive rats

Isabel Prieto; Francisco Hermoso; Marc de Gasparo; Félix Vargas; Francisco Alba; Ana B. Segarra; Inmaculada Banegas; Manuel Ramírez

In spite of the well-known contribution of angiotensin II (Ang II) in the pathogenesis of Goldblatt two-kidney one clip (G2K1C) hypertension, the importance of other Ang peptides, such as Ang III, Ang IV or Ang 2-10, is scarcely understood. The functional status of these peptides depends on the action of several aminopeptidases called angiotensinases. The metabolism of Ang III to Ang IV by aminopeptidase M (AlaAP) and of Ang I to Ang 2-10 by aspartyl aminopeptidase (AspAP) was evaluated in the renal cortex and medulla of normotensive (Sham-operated) and hypertensive (G2K1C) rats, treated or not with the AT(1) receptor antagonist valsartan. The results demonstrated a highly significant increase of membrane-bound (MEMB) AlaAP in the cortex of the non-ischemic kidney of G2K1C rats compared with the kidney of normal rats and with the clipped kidney of G2K1C rats. This suggests an increased formation of Ang IV in the non-clipped kidney of G2R1C rats. Valsartan reduced MEMB AlaAP and AspAP activities in the renal cortex of normotensive and in the clipped kidney of hypertensive rats. The reduced metabolism of Ang III may prolong its half-life in valsartan-treated animals. These results suggest a role for AlaAP in renovascular hypertension. In addition, the higher AspAP activity of the renal cortex compared to medulla reflects its relative functional difference between both locations.


Neuroendocrinology | 2004

Plasma Aminopeptidase Activities in Rats after Left and Right Intrastriatal Administration of 6-Hydroxydopamine

Inmaculada Banegas; Isabel Prieto; Francisco Vives; Francisco Alba; Raquel Duran; Ana B. Segarra; Marc de Gasparo; Manuel Ramírez

Asymmetries in the neuroendocrine system extend from central structures to paired endocrine glands and their innervation. In addition to the well-known asymmetry in the function of brain dopamine, there are also asymmetries in the peripheral response to experimental hemi-parkinsonism, performed by means of lesions of the nigrostriatal system with 6-hydroxydopamine (6-OHDA) injections into the left or right hemisphere. Therefore, it is speculated that the neuroendocrine system would also be asymmetrically affected in experimental hemi-parkinsonism. Aminopeptidases (AP) play a major role in the control of peptide concentration at both central and peripheral levels in tissues and blood, thus reflecting the functional status of their endogenous substrates. Therefore, to evaluate the peripheral response of hemi-parkinsonism, we have performed a comprehensive study of plasma AP activities after lesions of the nigrostriatal system with 6-OHDA administered into either left or right striatum of adult male rats. Saline was injected into control groups. AlaAP, CysAP, AspAP and GluAP activities were determined in plasma, using specific arylamides as substrates. Plasma AlaAP activity increased 3-fold (p < 0.001) whereas AspAP activity decreased by 30% (p < 0.05) after lesion of the right hemisphere. In contrast, CysAP and GluAP activities increased significantly after lesion of the left hemisphere by 200 and 50%, respectively (p < 0.05). The main discovery of the present results demonstrates that experimental hemi-parkinsonism affects differentially the plasma AP activities depending on the hemisphere in which the lesion is performed. This suggests that the circulating hormones, susceptible to be hydrolyzed by these enzymatic activities, are also modified.


Current Medicinal Chemistry | 2013

The Renin-Angiotensin System: New Insight into Old Therapies

Manuel Ramírez-Sánchez; Isabel Prieto; Rosemary Wangensteen; Inmaculada Banegas; Ana B. Segarra; Ana Belén Villarejo; Francisco Vives; Justo Cobo; M. de Gasparo

Although the renin-angiotensin system (RAS) is already an old acquaintance, there are often exciting discoveries that improve our knowledge of it and open new therapeutic possibilities. Moreover, well-established drugs, such as angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), or beta-blockers, show that their mechanism of action may be the result of parallel pathways other than the ones initially established. A detailed analysis of the RAS can be carried out in part through the study of the enzymes, named angiotensinases, involved in its cascade, whose activity is a reflection of the functionality of their peptide substrates. The study of these enzymes offers the possibility of controlling the effects of angiotensins through various pharmacological manipulations. For example, angiotensinase inhibitors or activators are being used or have been proposed as antihypertensive agents. They have also been suggested as analgesic and antidepressant drugs or targets for drug development against different pathologies such as Alzheimers disease, epilepsy or ischemia. On the other hand, the analysis of brain asymmetry has revealed surprising results about the laterality of central and peripheral components of the RAS. Such studies indicate that the neurovisceral integration, already proposed by Claude Bernard (1867) should also be analyzed from a bilateral perspective. In this review, the RAS and the role of various angiotensinases implicated in the cascade are revisited. Therapeutic strategies involving some components of the RAS with an unusual vision resulting from a bilateral perspective added to their study are discussed.


Behavioural Brain Research | 2005

Angiotensinase activity is asymmetrically distributed in the amygdala, hippocampus and prefrontal cortex of the rat

Inmaculada Banegas; Isabel Prieto; Francisco Alba; Francisco Vives; A. Araque; Ana B. Segarra; Raquel Duran; M. de Gasparo; Manuel Ramírez

There are important asymmetries in brain functions such as emotional processing and stress response in humans and animals. Knowledge of the bilateral distribution of brain neurotransmitters is important to appropriately understand its functions. Some peptides such as those included in the renin-angiotensin system (RAS) and cholecystokinin (CCK) are related to modulation of behavior and stress. However, although angiotensin AT1 and CCK type 2 receptors were found in adult rat brain, there are no studies of their bilateral distribution in stress-related areas. The function of angiotensin peptides is depending on the action of several aminopeptidases (AP) called angiotensinases, some of them being also involved in the metabolism of CCK. We have studied the bilateral distribution of soluble (SOL) and membrane-bound (MEM) alanyl- (AlaAP), cystinyl- (CysAP), glutamyl- (GluAP) and aspartyl- (AspAP) AP activities in stress-related areas such as amygdala, hippocampus and medial prefrontal cortex of adult male rats in resting conditions. These enzymes are involved in the metabolism of angiotensins (AlaAP, CysAP, GluAP, AspAP) and CCK (GluAP, AspAP). In the amygdala, all the activities studied showed a right predominance with a significant difference ranging from 30% for SOL CysAP to 125% for SOL GluAP. In the hippocampus, there was a left predominance for SOL AlaAP, SOL and MEM CysAP and MEM AspAP activities (100, 80, 300 and 100% higher, respectively). In contrast, GluAP predominated remarkably in the right hippocampus (eight-fold for SOL and three-fold for MEM). In the prefrontal cortex, SOL and MEM CysAP and SOL AspAP predominated in the left hemisphere (40, 100 and 40% higher, respectively). These results demonstrated a heterogeneous bilateral pattern of angiotensinase activities in motivation and stress-related areas. This may reflect an uneven asymmetrical distribution of their endogenous substrates depending on the brain location and consequently, it would be also a reflect of the asymmetries in the functions they are involved in.


Neuroscience Letters | 2011

Blood pressure increased dramatically in hypertensive rats after left hemisphere lesions with 6-hydroxydopamine

Inmaculada Banegas; Isabel Prieto; Ana B. Segarra; Raquel Duran; Francisco Vives; Francisco Alba; Juan de Dios Luna; M. de Gasparo; R. Wangesteen; M. Ruiz-Bailén; Manuel Ramírez-Sánchez

Plasma angiotensinase activity, nitric oxide and systolic blood pressure (SBP) were differently affected after unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA), depending on the brain hemisphere injured. Moreover, normotensive and hypertensive rats responded differently suggesting an asymmetry in the organization of the autonomic nervous system of the vessels. The aim of this study was to investigate the evolution of SBP and heart rate (HR) over time after nigrostriatal lesions in normotensive and hypertensive rat strains. Unilateral depletions of brain dopamine were performed by injecting 6-OHDA into the left or right striatum of normotensive and hypertensive rats. Vehicle without 6-OHDA was unilaterally injected in control (sham) groups. SBP and heart rate (HR) were measured in un-anesthetised animals 10 and 3 days before administration of 6-OHDA or vehicle and 3 and 25 days after treatment. In normotensive rats, at the end of study, SBP increased significantly from pre-lesioned values in left-lesioned animals but no differences were observed in right-lesioned or sham groups. Before sacrifice, there was a significant reduction from pre-lesion values in HR. In hypertensive animals, there was a highly significant increase of SBP in left-lesioned and sham left rats and a slight increase in right-lesioned but no differences were observed in sham right group. No differences in HR were observed throughout the study in the groups studied. The present results represent direct experimental evidence of an asymmetrical cardiovascular response to unilateral brain lesions, suggesting that left injury may have a worst prognosis.


Behavioural Brain Research | 2010

Lateralized response of oxytocinase activity in the medial prefrontal cortex of a unilateral rat model of Parkinson's disease

Inmaculada Banegas; Isabel Prieto; Francisco Vives; Francisco Alba; Marc de Gasparo; Raquel Duran; Ana B. Segarra; Manuel Ramírez

Individuals in the early stage of Parkinsons disease exhibit cognitive impairments as a result of hemisphere damage. The mesocortical dopamine system, particularly the medial prefrontal cortex (mPFC), is implicated in cognitive functions and is characterized by an asymmetric organization. Oxytocinase activity (OX) is also asymmetrically distributed in the mPFC of normal rats and is involved in cognitive functions. OX was measured in the left and right mPFC of rats with left or right hemi-parkinsonism, induced by intrastriatal injections of 6-hydroxydopamine, and compared with sham controls. These results demonstrated that the striking basal left predominance of OX observed in both the left and the right sham controls was radically disrupted in lesioned animals. The bilateral distribution in lesioned animals was altered differently depending on the injured hemisphere. These results may reflect changes in the enzyme substrates and consequently in the functions in which they are involved. These results may account, in part, for the cognitive abnormalities observed in hemi-parkinsonism.

Collaboration


Dive into the Inmaculada Banegas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge