Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inmaculada Ortiz is active.

Publication


Featured researches published by Inmaculada Ortiz.


Water Research | 2012

State of the art and review on the treatment technologies of water reverse osmosis concentrates.

A. Pérez-González; Ane Urtiaga; R. Ibáñez; Inmaculada Ortiz

The growing demand for fresh water is partially satisfied by desalination plants that increasingly use membrane technologies and among them reverse osmosis to produce purified water. Operating with water recoveries from 35% to 85% RO plants generate huge volumes of concentrates containing all the retained compounds that are commonly discharged to water bodies and constitute a potentially serious threat to marine ecosystems; therefore there is an urgent need for environmentally friendly management options of RO brines. This paper gives an overview on the potential treatments to overcome the environmental problems associated to the direct discharge of RO concentrates. The treatment options have been classified according to the source of RO concentrates and the maturity of the technologies. For the sake of clarity three different sources of RO concentrates are differentiated i) desalination plants, ii) tertiary processes in WWTP, and iii) mining industries. Starting with traditional treatments such as evaporation and crystallization other technologies that have emerged in last years to reduce the volume of the concentrate before disposal and with the objective of achieving zero liquid discharge and recovery of valuable compounds from these effluents are also reviewed. Most of these emerging technologies have been developed at laboratory or pilot plant scale (see Table 1). With regard to RO concentrates from WWTP, the manuscript addresses recent studies that are mainly focused on reducing the organic pollutant load through the application of innovative advanced oxidation technologies. Finally, works that report the treatment of RO concentrates from industrial sources are analyzed as well.


Journal of Environmental Management | 2015

Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal.

Sachin V. Jadhav; Eugenio Bringas; Ganapati D. Yadav; Virendra K. Rathod; Inmaculada Ortiz; Kumudini V. Marathe

Chronic contamination of groundwaters by both arsenic (As) and fluoride (F) is frequently observed around the world, which has severely affected millions of people. Fluoride and As are introduced into groundwaters by several sources such as water-rock interactions, anthropogenic activities, and groundwater recharge. Coexistence of these pollutants can have adverse effects due to synergistic and/or antagonistic mechanisms leading to uncertain and complicated health effects, including cancer. Many developing countries are beset with the problem of F and As laden waters, with no affordable technologies to provide clean water supply. The technologies available for the simultaneous removal are akin to chemical treatment, adsorption and membrane processes. However, the presence of competing ions such as phosphate, silicate, nitrate, chloride, carbonate, and sulfate affect the removal efficiency. Highly efficient, low-cost and sustainable technology which could be used by rural populations is of utmost importance for simultaneous removal of both pollutants. This can be realized by using readily available low cost materials coupled with proper disposal units. Synthesis of inexpensive and highly selective nanoadsorbents or nanofunctionalized membranes is required along with encapsulation units to isolate the toxicant loaded materials to avoid their re-entry in aquifers. A vast number of reviews have been published periodically on removal of As or F alone. However, there is a dearth of literature on the simultaneous removal of both. This review critically analyzes this important issue and considers strategies for their removal and safe disposal.


Water Research | 2010

Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment

G. Pérez; Amadeo R. Fernández-Alba; Ane Urtiaga; Inmaculada Ortiz

This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations.


Water Research | 2011

Boron-doped diamond anodic treatment of landfill leachate: evaluation of operating variables and formation of oxidation by-products.

Ángela Anglada; Ane Urtiaga; Inmaculada Ortiz; Dionissios Mantzavinos; Evan Diamadopoulos

Landfill leachate with a low BOD/COD ratio was electrochemically oxidized by means of a boron-doped diamond anode. In addition to organic matter removal, this study addressed the issue of formation of both chlorinated organic compounds and nitrate ions as a result of organic matter and ammonia and/or organic nitrogen electro-oxidation in the presence of chloride ions. A factorial design methodology was implemented to evaluate the statistically important operating variables: treatment time (1-4 h), pH (5-8), current intensity (6.3-8.4 A) and addition of chloride (2500-4500 mg L(-1)). The process was evaluated on COD, total nitrogen (TN) and colour removal, as well as on the formation of nitrate, nitrite and chlorinated organics. Of the four variables studied, treatment time and pH had a considerable influence on COD and colour removal. On the contrary, none of the variables had a significant effect on the elimination of TN for which an average removal of 61 mg L(-1) was obtained. The studied variables exhibited different effects on the four groups of organo-chlorinated compounds considered in this study, namely trihalomethanes (THMs), haloacetonitriles (HANs), haloketons (HKs) and 1,2-dichloroethane (DCA). Further analysis at more intense conditions, i.e. current intensity up to 18 A and reaction time up to 8 h revealed that high levels of decolourization (84%) could be achieved followed by low COD (51%) and ammonia (32%) removals. Apart from DCA, the concentration of chlorinated organics increased continuously with treatment time reaching values as high as 1.9 mg L(-1), 753 μg L(-1) and 431 μg L(-1) of THMs, HANs and HKs, respectively.


Water Research | 2011

Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes

V. Díaz; R. Ibáñez; P. Gómez; Ane Urtiaga; Inmaculada Ortiz

The viability of the electro-oxidation technology provided with boron doped diamond (BDD) electrodes for the treatment and reuse of the seawater used in a Recirculating Aquaculture System (RAS) was evaluated in this work. The influence of the applied current density (5-50 A m(-2)) in the removal of Total Ammonia Nitrogen (TAN), nitrite and chemical oxygen demand (COD) was analyzed observing that complete TAN removal together with important reductions of the other considered contaminants could be achieved, thus meeting the requirements for reuse of seawater in RAS systems. TAN removal, mainly due to an indirect oxidation mechanism was described by a second order kinetics while COD and nitrite removal followed zero-th order kinetics. The values of the kinetic constants for the anodic oxidation of each compound were obtained as a function of the applied current density (k(TAN) = 7.86 × 10(-5) · exp(6.30 × 10(-2) J); kNO2 = 3.43 × 10(-2) J; k(COD) = 1.35 × 10(-2) J). The formation of free chlorine and oxidation by-products, i.e., trihalomethanes (THMs) was followed along the electro-oxidation process. Although a maximum concentration of 1.7 mg l(-1) of total trihalomethanes was detected an integrated process combining electrochemical oxidation in order to eliminate TAN, nitrite and COD and adsorption onto activated carbon to remove the residual chlorine and THMs is proposed, as an efficient alternative to treat and reuse the seawater in fish culture systems. Finally, the energy consumption of the treatment has been evaluated.


Journal of Hazardous Materials | 2010

Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

Ángela Anglada; Ana Urtiaga; Inmaculada Ortiz

Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m(2) was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.


Water Research | 2012

Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates

G. Pérez; J. Saiz; R. Ibáñez; Ane Urtiaga; Inmaculada Ortiz

This work investigates the formation of oxidation by-products during the electrochemical removal of ammonium using BDD electrodes from wastewaters containing chlorides. The influence of the initial chloride concentration has been experimentally analyzed first, working with model solutions with variable ammonium concentration and second, with municipal landfill leachates. Two different levels of chloride concentration were studied, i) low chloride concentrations ranging between 0 and 2000 mg/L and, ii) high chloride concentrations ranging between 5000 and 20,000 mg/L. Ammonium removal took place mainly via indirect oxidation leading to the formation of nitrogen gas and nitrate as the main oxidation products; at high chloride concentration the formation of nitrogen gas and the rate of ammonium removal were both favored. However, chloride was also oxidized during the electrochemical treatment leading to the formation of free chlorine responsible of the ammonium oxidation, together with undesirable products such as chloramines, chlorate and perchlorate. Chloramines appeared during the treatment but they reached a maximum and then started decreasing, being totally removed when high chloride concentrations were used. With regard to the formation of chlorate and perchlorate once again the concentration of chloride exerted a strong influence on the formation kinetics of the oxidation by-products and whereas at low chloride concentrations, chlorate appeared like an intermediate compound leading to the formation of perchlorate, at high chloride concentrations chlorate formation was delayed significantly and perchlorate was not detected during the experimental time. Thus this work contributes first to the knowledge of the potential hazards of applying the electro-oxidation technology as an environmental technology to deal with ammonium oxidation under the presence of chloride and second it reports efficient conditions that minimize or even avoid the formation of undesirable by-products.


Journal of Membrane Science | 1996

Membrane mass transport coefficient for the recovery of Cr(VI) in hollow fiber extraction and back-extraction modules

Inmaculada Ortiz; Berta Galán; Angel Irabien

Abstract This work has been focused to the determination of the membrane mass transport coefficient in the simultaneous non-dispersive extraction and back-extraction of Cr(VI). Following the methodology previously reported by the authors for the kinetic modelling of hollow fiber extraction and back-extraction processes, considering the assumption that the overall mass transport resistance is dominated by the resistance in the organic membrane, when Aliquat 336 is used as carrier, and after the description of the interfacial chemical equilibrium in the extraction process (non-linear model, K eq = 0.35) and in the back-extraction process (linear model, H r = 3.6), it has been possible to describe successfully the experimental results obtaining the optimum value for the membrane mass transport coefficient, K M = 2.2 × 10 −8 m/s, which allows the design and optimization of the recovery of Cr(VI).


Journal of Hazardous Materials | 2009

Integrated treatment of landfill leachates including electrooxidation at pilot plant scale.

Ane Urtiaga; Ana Rueda; Ángela Anglada; Inmaculada Ortiz

This paper reports the integration of advanced and conventional technologies to deal with the treatment of landfill leachates. The raw leachate, with average values of COD=4430 mg/L and N-NH(4)(+)=1225 mg/L, was first treated on site by an activated sludge large-scale process reducing the former parameters to 1750 mg/L (av.) of COD and 750 mg/L (av.) of N-NH(4)(+). Next, 50 L/h of the effluent were pumped to a pilot plant that included Fenton oxidation followed by an electrooxidation unit, provided with boron doped diamond anodes (anode area=1.05 m(2)); almost complete removal of the organic matter and ammonium nitrogen was achieved. Comparison of the results with those obtained in the laboratory (70 cm(2) of anode area) was performed observing a similar performance in the kinetics of COD removal, while differences were found in the ammonium removal rates. The specific energy consumption necessary to electro-oxidize the organic load below the disposal limit (COD<160 mg/L) at pilot plant scale was 35 kWh/m(3).


Journal of Hazardous Materials | 2000

Characterisation and management of incinerator wastes

R. Ibáñez; A. Andrés; Javier R. Viguri; Inmaculada Ortiz; J.A. Irabien

Management of municipal and hospital wastes by means of incineration processes generates solid residues, such as bottom and fly ashes and air pollution control residues with high content of heavy metals, inorganic salts and other organic compounds. Characterisation of 24 ash samples, collected from four municipal solid waste incinerators (MSWI) and six hospital medical waste incinerators (HMWI) located in the Basque Country Region (Northern Spain), were carried out at the request of Spanish Regulations and European Economic Community guidelines. The ecotoxicity values, EC(50), of the TCLP leachates show a high variability ranging from 12,967 to 1,000,000mgl(-1) in MSWI samples and from 2917 to 333,150mgl(-1) in HMWI samples. Results from chemical characterisation of DIN 38414-S4 leachates show a high concentration of lead, sulphate and chloride in MSWI samples and chromium in HMWI samples.

Collaboration


Dive into the Inmaculada Ortiz's collaboration.

Top Co-Authors

Avatar

Ane Urtiaga

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Gorri

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar

R. Ibáñez

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar

A. Ortiz

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge