Inmaculada Segura
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inmaculada Segura.
Cancer Cell | 2011
Charlotte Rolny; Massimiliano Mazzone; Sònia Tugues; Damya Laoui; Irja Johansson; Cathy Coulon; Mario Leonardo Squadrito; Inmaculada Segura; Xiujuan Li; Ellen Knevels; Sandra Costa; Stefan Vinckier; Tom Dresselaer; Peter Åkerud; Maria De Mol; Henriikka Salomäki; Mia Phillipson; Sabine Wyns; Erik G. Larsson; Ian Buysschaert; Johan Botling; Uwe Himmelreich; Jo A. Van Ginderachter; Michele De Palma; Mieke Dewerchin; Lena Claesson-Welsh; Peter Carmeliet
Polarization of tumor-associated macrophages (TAMs) to a proangiogenic/immune-suppressive (M2-like) phenotype and abnormal, hypoperfused vessels are hallmarks of malignancy, but their molecular basis and interrelationship remains enigmatic. We report that the host-produced histidine-rich glycoprotein (HRG) inhibits tumor growth and metastasis, while improving chemotherapy. By skewing TAM polarization away from the M2- to a tumor-inhibiting M1-like phenotype, HRG promotes antitumor immune responses and vessel normalization, effects known to decrease tumor growth and metastasis and to enhance chemotherapy. Skewing of TAM polarization by HRG relies substantially on downregulation of placental growth factor (PlGF). Besides unveiling an important role for TAM polarization in tumor vessel abnormalization, and its regulation by HRG/PlGF, these findings offer therapeutic opportunities for anticancer and antiangiogenic treatment.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2009
Frederik De Smet; Inmaculada Segura; Katrien De Bock; Philipp J. Hohensinner; Peter Carmeliet
Filopodia, “the fingers that do the walking,” have been identified on endothelial cells at the tip of sprouting vessels for half a century, but the key role of the tip cell in vessel branching has been recognized only in the past few years. A model is emerging, whereby tip cells lead the way in a branching vessel, stalk cells elongate the sprout, and a very recently discovered phalanx cell ensures quiescence and perfusion of the newly formed branch. Recent genetic studies have shed light on the molecular signature of these distinct endothelial phenotypes; this provides a novel conceptual framework of how vessel morphogenesis occurs. Here, we will discuss the molecular candidates that participate in the decision of endothelial cells to adapt these distinct fates and highlight the emerging insights on how these cells send out filopodia while navigating.
Neuron | 2011
Carmen Ruiz de Almodovar; Pierre Fabre; Ellen Knevels; Cathy Coulon; Inmaculada Segura; Patrick C.G. Haddick; Liesbeth Aerts; Nicolas Delattin; Geraldine Strasser; Won-Jong Oh; Christian Lange; Stefan Vinckier; Jody J. Haigh; Coralie Fouquet; Chengua Gu; Kari Alitalo; Valérie Castellani; Marc Tessier-Lavigne; Alain Chédotal; Frédéric Charron; Peter Carmeliet
Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons toward the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning toward floor plate tissue, suggesting that additional guidance cues are present. Here we show that the prototypic angiogenic factor VEGF is secreted by the floor plate and is a chemoattractant for commissural axons in vitro and in vivo. Inactivation of Vegf in the floor plate or of its receptor Flk1 in commissural neurons causes axon guidance defects, whereas Flk1 blockade inhibits turning of axons to VEGF in vitro. Similar to Shh and Netrin-1, VEGF-mediated commissural axon guidance requires the activity of Src family kinases. Our results identify VEGF and Flk1 as a novel ligand/receptor pair controlling commissural axon guidance.
Cancer Cell | 2013
Françoise Bono; Frederik De Smet; Corentin Herbert; Katrien De Bock; Maria Georgiadou; Pierre Fons; Marc Tjwa; Chantal Alcouffe; Annelii Ny; Marc Bianciotto; Bart Jonckx; Masahiro Murakami; Anthony A. Lanahan; Christof Michielsen; David Sibrac; Frédérique Dol-Gleizes; Massimiliano Mazzone; Serena Zacchigna; Jean-Pascal Herault; Christian Fischer; Patrice Rigon; Carmen Ruiz de Almodovar; Filip Claes; Isabelle Blanc; Koen Poesen; Jie Zhang; Inmaculada Segura; Geneviève Gueguen; Marie-Françoise Bordes; Diether Lambrechts
Receptor tyrosine kinases (RTK) are targets for anticancer drug development. To date, only RTK inhibitors that block orthosteric binding of ligands and substrates have been developed. Here, we report the pharmacologic characterization of the chemical SSR128129E (SSR), which inhibits fibroblast growth factor receptor (FGFR) signaling by binding to the extracellular FGFR domain without affecting orthosteric FGF binding. SSR exhibits allosteric properties, including probe dependence, signaling bias, and ceiling effects. Inhibition by SSR is highly conserved throughout the animal kingdom. Oral delivery of SSR inhibits arthritis and tumors that are relatively refractory to anti-vascular endothelial growth factor receptor-2 antibodies. Thus, orally-active extracellularly acting small-molecule modulators of RTKs with allosteric properties can be developed and may offer opportunities to improve anticancer treatment.
Trends in Molecular Medicine | 2009
Inmaculada Segura; Frederik De Smet; Philipp J. Hohensinner; Carmen Ruiz de Almodovar; Peter Carmeliet
Although the nervous and vascular systems are functionally different, they show a high degree of anatomic parallelism and cross-talk. They also share similar mechanisms and molecular cues that regulate their development and maintenance. Malfunctioning of this cross-talk can cause or influence several vascular and neuronal disorders. In this review, we first provide a brief overview of the molecular and cellular mechanisms that govern the neurovascular link. Second, we focus on two neurodegenerative diseases, Alzheimers disease and amyotrophic lateral sclerosis, to illustrate how a defective neurovascular link might contribute to their pathogenesis. Finally, we briefly discuss some therapeutic implications of the neurovascular link for designing strategies to treat these diseases.
Neuron | 2010
Annelies Quaegebeur; Inmaculada Segura; Peter Carmeliet
The role of pericytes in the control of blood-brain barrier (BBB) integrity has remained enigmatic. In this issue, Bell et al. and two concurrent studies highlight that pericyte loss causes BBB breakdown and hypoperfusion. Remarkably, these vascular changes precede neurodegeneration and cognitive defects in old age.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Claire Meissirel; Carmen Ruiz de Almodovar; Ellen Knevels; Cathy Coulon; Naura Chounlamountri; Inmaculada Segura; Pierre de Rossi; Stefan Vinckier; Kristof Anthonis; Bérangère Deléglise; Maria De Mol; Carine Ali; Karel Dassonville; Ellen Loyens; Jérôme Honnorat; Yvette Michotte; Véronique Rogemond; Ilse Smolders; Thomas Voets; Denis Vivien; Pieter Vanden Berghe; Ludo Van Den Bosch; Wim Robberecht; Alain Chédotal; Salvatore Oliviero; Mieke Dewerchin; Dietmar Schmucker; Nicole Thomasset; Paul Antoine Salin; Peter Carmeliet
NMDA type glutamate receptors (NMDARs) are best known for their role in synaptogenesis and synaptic plasticity. Much less is known about their developmental role before neurons form synapses. We report here that VEGF, which promotes migration of granule cells (GCs) during postnatal cerebellar development, enhances NMDAR-mediated currents and Ca2+ influx in immature GCs before synapse formation. The VEGF receptor Flk1 forms a complex with the NMDAR subunits NR1 and NR2B. In response to VEGF, the number of Flk1/NR2B coclusters on the cell surface increases. Stimulation of Flk1 by VEGF activates Src-family kinases, which increases tyrosine phosphorylation of NR2B. Inhibition of Src-family kinases abolishes the VEGF-dependent NR2B phosphorylation and amplification of NMDAR-mediated currents and Ca2+ influx in GCs. These findings identify VEGF as a modulator of NMDARs before synapse formation and highlight a link between an activity-independent neurovascular guidance cue (VEGF) and an activity-regulated neurotransmitter receptor (NMDAR).
Cell Metabolism | 2016
Annelies Quaegebeur; Inmaculada Segura; Roberta Schmieder; Dries Verdegem; Francesco Bifari; Tom Dresselaers; Guy Eelen; Debapriva Ghosh; Shawn M. Davidson; Sandra Schoors; Dorien Broekaert; Bert Cruys; Kristof Govaerts; Carla De Legher; Ann Bouché; Luc Schoonjans; Matt S. Ramer; Gene Hung; Goele Bossaert; Don W. Cleveland; Uwe Himmelreich; Thomas Voets; Robin Lemmens; C. Frank Bennett; Wim Robberecht; Katrien De Bock; Mieke Dewerchin; Bart Ghesquière; Sarah-Maria Fendt; Peter Carmeliet
The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.
Cell Reports | 2016
Inmaculada Segura; Christian Lange; Ellen Knevels; Anastasiya Moskalyuk; Rocco Pulizzi; Guy Eelen; Thibault Chaze; Cicerone Tudor; Cyril Boulegue; Matthew Holt; Dirk Daelemans; Mariette Matondo; Bart Ghesquière; Michele Giugliano; Carmen Ruiz de Almodovar; Mieke Dewerchin; Peter Carmeliet
Summary Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition.
Cell | 2013
Katrien De Bock; Maria Georgiadou; Sandra Schoors; Anna Kuchnio; Brian W. Wong; Anna Rita Cantelmo; Annelies Quaegebeur; Bart Ghesquière; Sandra Cauwenberghs; Guy Eelen; Li-Kun Phng; Inge Betz; Bieke Tembuyser; Katleen Brepoels; Jonathan Welti; Ilse Geudens; Inmaculada Segura; Bert Cruys; Franscesco Bifari; Raquel Blanco; Sabine Wyns; Jeroen Vangindertael; Susana Rocha; Russel T Collins; Sebastian Munck; Dirk Daelemans; Hiromi Imamura; Roland Devlieger; Mark H. Rider; Paul P. Van Veldhoven