Inmaculada Vaca
University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inmaculada Vaca.
Biochemical Journal | 2006
Mónica Lamas-Maceiras; Inmaculada Vaca; Esther Rodríguez; Javier Casqueiro; Juan F. Martín
A gene, phl, encoding a phenylacetyl-CoA ligase was cloned from a phage library of Penicillium chrysogenum AS-P-78. The presence of five introns in the phl gene was confirmed by reverse transcriptase-PCR. The phl gene encoded an aryl-CoA ligase closely related to Arabidopsis thaliana 4-coumaroyl-CoA ligase. The Phl protein contained most of the amino acids defining the aryl-CoA (4-coumaroyl-CoA) ligase substrate-specificity code and differed from acetyl-CoA ligase and other acyl-CoA ligases. The phl gene was not linked to the penicillin gene cluster. Amplification of phl in an autonomous replicating plasmid led to an 8-fold increase in phenylacetyl-CoA ligase activity and a 35% increase in penicillin production. Transformants containing the amplified phl gene were resistant to high concentrations of phenylacetic acid (more than 2.5 g/l). Disruption of the phl gene resulted in a 40% decrease in penicillin production and a similar reduction of phenylacetyl-CoA ligase activity. The disrupted mutants were highly susceptible to phenylacetic acid. Complementation of the disrupted mutants with the phl gene restored normal levels of penicillin production and resistance to phenylacetic acid. The phenylacetyl-CoA ligase encoded by the phl gene is therefore involved in penicillin production, although a second aryl-CoA ligase appears to contribute partially to phenylacetic acid activation. The Phl protein lacks a peptide-carrier-protein domain and behaves as an aryl-capping enzyme that activates phenylacetic acid and transfers it to the isopenicillin N acyltransferase. The Phl protein contains the peroxisome-targeting sequence that is also present in the isopenicillin N acyltransferase. The peroxisomal co-localization of these two proteins indicates that the last two enzymes of the penicillin pathway form a peroxisomal functional complex.
Journal of Microbiological Methods | 2008
Ricardo V. Ullán; Ramiro P. Godio; Fernando Teijeira; Inmaculada Vaca; Carlos García-Estrada; Raúl Feltrer; Katarina Kosalková; Juan F. Martín
In this work we report the development and validation of a new RNA interference vector (pJL43-RNAi) containing a double-stranded RNA expression cassette for gene silencing in the filamentous fungi Penicillium chrysogenum and Acremonium chrysogenum. Classical targeted gene disruption in these fungi is very laborious and inefficient due to the low frequency of homologous recombination. The RNAi vector has been validated by testing the attenuation of two different genes of the beta-lactam pathway; pcbC in P. chrysogenum and cefEF in A. chrysogenum. Quantification of mRNA transcript levels and antibiotic production showed knockdown of pcbC and cefEF genes in randomly isolated transformants of P. chrysogenum and A. chrysogenum, respectively. The process is efficient; 15 to 20% of the selected transformants were found to be knockdown mutants showing reduced penicillin or cephalosporin production. This new RNAi vector opens the way for exploring gene function in the genomes of P. chrysogenum and A. chrysogenum.
Biochemical Journal | 2009
Fernando Teijeira; Ricardo V. Ullán; Susana M. Guerra; Carlos García-Estrada; Inmaculada Vaca; Juan F. Martín
The cluster of early cephalosporin biosynthesis genes (pcbAB, pcbC, cefD1, cefD2 and cefT of Acremonium chrysogenum) contains all of the genes required for the biosynthesis of the cephalosporin biosynthetic pathway intermediate penicillin N. Downstream of the cefD1 gene, there is an unassigned open reading frame named cefM encoding a protein of the MFS (major facilitator superfamily) with 12 transmembrane domains, different from the previously reported cefT. Targeted inactivation of cefM by gene replacement showed that it is essential for cephalosporin biosynthesis. The disrupted mutant accumulates a significant amount of penicillin N, is unable to synthesize deacetoxy-, deacetyl-cephalosporin C and cephalosporin C and shows impaired differentiation into arthrospores. Complementation of the disrupted mutant with the cefM gene restored the intracellular penicillin N concentration to normal levels and allowed synthesis and secretion of the cephalosporin intermediates and cephalosporin C. A fused cefM-gfp gene complemented the cefM-disrupted mutant, and the CefM-GFP (green fluorescent protein) fusion was targeted to intracellular microbodies that were abundant after 72 h of culture in the differentiating hyphae and in the arthrospore chains, coinciding with the phase of intense cephalosporin biosynthesis. Since the dual-component enzyme system CefD1-CefD2 that converts isopenicillin N into penicillin N contains peroxisomal targeting sequences, it is probable that the epimerization step takes place in the peroxisome matrix. The CefM protein seems to be involved in the translocation of penicillin N from the peroxisome (or peroxisome-like microbodies) lumen to the cytosol, where it is converted into cephalosporin C.
Applied Microbiology and Biotechnology | 2007
Carlos García-Estrada; Inmaculada Vaca; Mónica Lamas-Maceiras; Juan F. Martín
Penicillium chrysogenum npe10 (Δpen; lacking the 56.8-kbp amplified region containing the penicillin gene cluster), complemented with one, two, or three penicillin biosynthetic genes, was used for in vivo studies on transport of benzylpenicillin intermediates. 6-Aminopenicillanic acid (6-APA) was taken up efficiently by P. chrysogenum npe10 unlike exogenous δ(l-α-aminoadipyl)-l-cysteinyl-d-valine or isopenicillin N (IPN), which were not taken up or were taken up very poorly. Internalization of exogenous IPN and 6-APA inside peroxisomes was tested by quantifying their peroximal conversion into benzylpenicillin in strains containing only the penDE gene. Exogenous 6-APA was transformed efficiently into benzylpenicillin, whereas IPN was converted very poorly into benzylpenicillin due to its weak uptake. IPN was secreted to the culture medium. IPN secretion decreased when increasing levels of phenylacetic acid were added to the culture medium. The P. chrysogenum membrane permeability to exogenous benzylpenicillin was tested in the npe10 strain. Penicillin is absorbed by the cells by an unknown mechanism, but its intracellular concentration is kept low.
Fungal Genetics and Biology | 2008
Carlos García-Estrada; Inmaculada Vaca; Francisco Fierro; Klaas Sjollema; Marten Veenhuis; Juan F. Martín
Previous studies in Penicillium chrysogenum and Aspergillus nidulans suggested that self-processing of the isopenicillin N acyltransferase (IAT) is an important differential factor in these fungi. Expression of a mutant penDE(C103S) gene in P. chrysogenum gave rise to an unprocessed inactive variant of IAT (IAT(C103S)) located inside peroxisomes, which indicates that transport of the proIAT inside these organelles is not dependent on the processing state of the protein. Co-expression of the penDE(C103S) and wild-type penDE genes in P. chrysogenum (Wis54-DE(C103S) strain) led to a decrease in benzylpenicillin levels. Changes in the wild-type IAT processing profile (beta subunit formation) were observed in the Wis54-DE(C103S) strain, suggesting a regulatory role of the unprocessed IAT(C103S) in the processing of the wild-type IAT. This was confirmed in Escherichia coli, where a delay in the processing of IAT in presence of the unprocessable IAT(C103S) was observed. Our results indicate that IAT is post-translationally regulated by its preprotein, which interferes with the self-processing.
World Journal of Microbiology & Biotechnology | 2013
Inmaculada Vaca; Carolina Faúndez; Felipe Maza; Braulio Paillavil; Valentina Hernández; Fermín Acosta; Gloria Levicán; Claudio Martínez; Renato Chávez
Unlike filamentous fungi and bacteria, very little is known about cultivable yeasts associated with marine sponges, especially those from Antarctic seas. During an expedition to King George Island, in the Antarctica, samples of 11 marine sponges were collected by scuba-diving. From these sponges, 20 psychrotolerant yeast isolates were obtained. Phylogenetic analyses of D1/D2 and ITS rRNA gene sequences revealed that the marine ascomycetous yeast Metschnikowia australis is the predominant organism associated with these invertebrates. Other species found belonged to the Basidiomycota phylum: Cystofilobasidium infirmominiatum, Rhodotorula pinicola, Leucosporidiella creatinivora and a new yeast from the Leucosporidiella genus. None of these yeasts have been previously associated with marine sponges. A screening to estimate the ability of these yeasts as producers of extracellular enzymatic activities at several pH and temperature conditions was performed. Several yeast isolates demonstrated amylolytic, proteolytic, lipolytic or cellulolytic activity, but none of them showed xylanolytic activity under the conditions assayed. To our knowledge, this work is the first description of cultivable yeasts associated with marine sponges from the Antarctic sea.
Frontiers in Microbiology | 2015
Renato Chávez; Francisco Fierro; Ramón O. García-Rico; Inmaculada Vaca
Natural product search is undergoing resurgence upon the discovery of a huge previously unknown potential for secondary metabolite (SM) production hidden in microbial genomes. This is also the case for filamentous fungi, since their genomes contain a high number of “orphan” SM gene clusters. Recent estimates indicate that only 5% of existing fungal species have been described, thus the potential for the discovery of novel metabolites in fungi is huge. In this context, fungi thriving in harsh environments are of particular interest since they are outstanding producers of unusual chemical structures. At present, there are around 16 genomes from extreme environment-isolated fungi in databases. In a preliminary analysis of three of these genomes we found that several of the predicted SM gene clusters are probably involved in the biosynthesis of compounds not yet described. Genome mining strategies allow the exploitation of the information in genome sequences for the discovery of new natural compounds. The synergy between genome mining strategies and the expected abundance of SMs in fungi from extreme environments is a promising path to discover new natural compounds as a source of medically useful drugs.
PLOS ONE | 2016
Abdiel Del-Cid; Carlos Gil-Durán; Inmaculada Vaca; Juan F. Rojas-Aedo; Ramón O. García-Rico; Gloria Levicán; Renato Chávez
The filamentous fungus Penicillium roqueforti is widely known as the ripening agent of blue-veined cheeses. Additionally, this fungus is able to produce several secondary metabolites, including the meroterpenoid compound mycophenolic acid (MPA). Cheeses ripened with P. roqueforti are usually contaminated with MPA. On the other hand, MPA is a commercially valuable immunosuppressant. However, to date the molecular basis of the production of MPA by P. roqueforti is still unknown. Using a bioinformatic approach, we have identified a genomic region of approximately 24.4 kbp containing a seven-gene cluster that may be involved in the MPA biosynthesis in P. roqueforti. Gene silencing of each of these seven genes (named mpaA, mpaB, mpaC, mpaDE, mpaF, mpaG and mpaH) resulted in dramatic reductions in MPA production, confirming that all of these genes are involved in the biosynthesis of the compound. Interestingly, the mpaF gene, originally described in P. brevicompactum as a MPA self-resistance gene, also exerts the same function in P. roqueforti, suggesting that this gene has a dual function in MPA metabolism. The knowledge of the biosynthetic pathway of MPA in P. roqueforti will be important for the future control of MPA contamination in cheeses and the improvement of MPA production for commercial purposes.
Journal of The Chilean Chemical Society | 2011
Aurelio San-Martín; Juana Rovirosa; Inmaculada Vaca; Karen Vergara; Laura Acevedo; Dolores Viña; Francisco Orallo; María Cristina Chamy
Four compounds that belong to two structure types, namely dibenzylbutyrolactone and sesterterpenoids, were obtained from the extract of the strain Aspergillus sp. (2P-22), isolated from a marine sponge, Cliona chilensis. Among them, compound 1 was identified as new, namely butylrolactone-VI. The structures of these compounds were characterized on the basis of spectroscopic data. Biological activities of these fungal metabolites, are described.
PLOS ONE | 2015
Carlos Gil-Durán; Juan F. Rojas-Aedo; Exequiel Medina; Inmaculada Vaca; Ramón O. García-Rico; Sebastián Villagrán; Gloria Levicán; Renato Chávez
Proteins containing Zn(II)2Cys6 domains are exclusively found in fungi and yeasts. Genes encoding this class of proteins are broadly distributed in fungi, but few of them have been functionally characterized. In this work, we have characterized a gene from the filamentous fungus Penicillium roqueforti that encodes a Zn(II)2Cys6 protein, whose function to date remains unknown. We have named this gene pcz1. We showed that the expression of pcz1 is negatively regulated in a P. roqueforti strain containing a dominant active Gαi protein, suggesting that pcz1 encodes a downstream effector that is negatively controlled by Gαi. More interestingly, the silencing of pcz1 in P. roqueforti using RNAi-silencing technology resulted in decreased apical growth, the promotion of conidial germination (even in the absence of a carbon source), and the strong repression of conidiation, concomitant with the downregulation of the genes of the central conidiation pathway brlA, abaA and wetA. A model for the participation of pcz1 in these physiological processes in P. roqueforti is proposed.