Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inna Gorshkova is active.

Publication


Featured researches published by Inna Gorshkova.


Nucleic Acids Research | 2005

Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones

Scott R. Budihas; Inna Gorshkova; Sergei Gaidamakov; Antony Wamiru; Marion K. Bona; Michael A. Parniak; Robert J. Crouch; James B. McMahon; John A. Beutler; Stuart F. J. Le Grice

High-throughput screening of a National Cancer Institute library of pure natural products identified the hydroxylated tropolone derivatives β-thujaplicinol (2,7-dihydroxy-4-1(methylethyl)-2,4,6-cycloheptatrien-1-one) and manicol (1,2,3,4-tetrahydro-5-7-dihydroxy-9-methyl-2-(1-methylethenyl)-6H-benzocyclohepten-6-one) as potent and selective inhibitors of the ribonuclease H (RNase H) activity of human immunodeficiency virus-type 1 reverse transcriptase (HIV-1 RT). β-Thujaplicinol inhibited HIV-1 RNase H in vitro with an IC50 of 0.2 μM, while the IC50 for Escherichia coli and human RNases H was 50 μM and 5.7 μM, respectively. In contrast, the related tropolone analog β-thujaplicin (2-hydroxy-4-(methylethyl)-2,4,6-cycloheptatrien-1-one), which lacks the 7-OH group of the heptatriene ring, was inactive, while manicol, which possesses a 7-OH group, inhibited HIV-1 and E.coli RNases H with IC50 = 1.5 μM and 40 μM, respectively. Such a result highlights the importance of the 2,7-dihydroxy function of these tropolone analogs, possibly through a role in metal chelation at the RNase H active site. Inhibition of HIV-2 RT-associated RNase H indirectly indicates that these compounds do not occupy the nonnucleoside inhibitor-binding pocket in the vicinity of the DNA polymerase domain. Both β-thujaplicinol and manicol failed to inhibit DNA-dependent DNA polymerase activity of HIV-1 RT at a concentration of 50 μM, suggesting that they are specific for the C-terminal RNase H domain, while surface plasmon resonance studies indicated that the inhibition was not due to intercalation of the analog into the nucleic acid substrate. Finally, we have demonstrated synergy between β-thujaplicinol and calanolide A, a nonnucleoside inhibitor of HIV-1 RT, raising the possibility that both enzymatic activities of HIV-1 RT can be simultaneously targeted.


Journal of Virology | 2008

Humanized Monoclonal Antibodies Derived from Chimpanzee Fabs Protect against Japanese Encephalitis Virus In Vitro and In Vivo

Ana P. Goncalvez; Cheng-Hsin Chien; Kamolchanok Tubthong; Inna Gorshkova; Carrie Roll; Olivia K. Donau; Peter Schuck; Sutee Yoksan; Sy-Dar Wang; Robert H. Purcell; Ching-Juh Lai

ABSTRACT Japanese encephalitis virus (JEV)-specific Fab antibodies were recovered by repertoire cloning from chimpanzees initially immunized with inactivated JE-VAX and then boosted with attenuated JEV SA14-14-2. From a panel of 11 Fabs recovered by different panning strategies, three highly potent neutralizing antibodies, termed Fabs A3, B2, and E3, which recognized spatially separated regions on the virion, were identified. These antibodies reacted with epitopes in different domains: the major determinant for Fab A3 was Lys179 (domain I), that for Fab B2 was Ile126 (domain II), and that for Fab E3 was Gly302 (domain III) in the envelope protein, suggesting that these antibodies neutralize the virus by different mechanisms. Potent neutralizing antibodies reacted with a low number of binding sites available on the virion. These three Fabs and derived humanized monoclonal antibodies (MAbs) exhibited high neutralizing activities against a broad spectrum of JEV genotype strains. Demonstration of antibody-mediated protection of JEV infection in vivo is provided using the mouse encephalitis model. MAb B2 was most potent, with a 50% protective dose (ED50) of 0.84 μg, followed by MAb A3 (ED50 of 5.8 μg) and then MAb E3 (ED50 of 24.7 μg) for a 4-week-old mouse. Administration of 200 μg/mouse of MAb B2 1 day after otherwise lethal JEV infection protected 50% of mice and significantly prolonged the average survival time compared to that of mice in the unprotected group, suggesting a therapeutic potential for use of MAb B2 in humans.


Journal of Virology | 2007

Characterization of Chimpanzee/Human Monoclonal Antibodies to Vaccinia Virus A33 Glycoprotein and Its Variola Virus Homolog In Vitro and in a Vaccinia Virus Mouse Protection Model

Zhaochun Chen; Patricia L. Earl; Jeffrey L. Americo; Inger K. Damon; Scott K. Smith; Fujuan Yu; Andrew Sebrell; Suzanne U. Emerson; Gary H. Cohen; Roselyn J. Eisenberg; Inna Gorshkova; Peter Schuck; William C. Satterfield; Bernard Moss; Robert H. Purcell

ABSTRACT Three distinct chimpanzee Fabs against the A33 envelope glycoprotein of vaccinia virus were isolated and converted into complete monoclonal antibodies (MAbs) with human γ1 heavy-chain constant regions. The three MAbs (6C, 12C, and 12F) displayed high binding affinities to A33 (Kd of 0.14 nM to 20 nM) and may recognize the same epitope, which was determined to be conformational and located within amino acid residues 99 to 185 at the C terminus of A33. One or more of the MAbs were shown to reduce the spread of vaccinia virus as well as variola virus (the causative agent of smallpox) in vitro and to more effectively protect mice when administered before or 2 days after intranasal challenge with virulent vaccinia virus than a previously isolated mouse anti-A33 MAb (1G10) or vaccinia virus immunoglobulin. The protective efficacy afforded by anti-A33 MAb was comparable to that of a previously isolated chimpanzee/human anti-B5 MAb. The combination of anti-A33 MAb and anti-B5 MAb did not synergize the protective efficacy. These chimpanzee/human anti-A33 MAbs may be useful in the prevention and treatment of vaccinia virus-induced complications of vaccination against smallpox and may also be effective in the immunoprophylaxis and immunotherapy of smallpox and other orthopoxvirus diseases.


Infection and Immunity | 2009

Novel chimpanzee/human monoclonal antibodies that neutralize anthrax lethal factor, and evidence for possible synergy with anti-protective antigen antibody.

Zhaochun Chen; Mahtab Moayeri; Devorah Crown; Suzanne U. Emerson; Inna Gorshkova; Peter Schuck; Stephen H. Leppla; Robert H. Purcell

ABSTRACT Three chimpanzee Fabs reactive with lethal factor (LF) of anthrax toxin were isolated and converted into complete monoclonal antibodies (MAbs) with human γ1 heavy-chain constant regions. In a macrophage toxicity assay, two of the MAbs, LF10E and LF11H, neutralized lethal toxin (LT), a complex of LF and anthrax protective antigen (PA). LF10E has the highest reported affinity for a neutralizing MAb against LF (dissociation constant of 0.69 nM). This antibody also efficiently neutralized LT in vitro, with a 50% effective concentration (EC50) of 0.1 nM, and provided 100% protection of rats against toxin challenge with a 0.5 submolar ratio relative to LT. LF11H, on the other hand, had a slightly lower binding affinity to LF (dissociation constant of 7.4 nM) and poor neutralization of LT in vitro (EC50 of 400 nM) and offered complete protection in vivo only at an equimolar or higher ratio to toxin. Despite this, LF11H, but not LF10E, provided robust synergistic protection when combined with MAb W1, which neutralizes PA. Epitope mapping and binding assays indicated that both LF10E and LF11H recognize domain I of LF (amino acids 1 to 254). Although domain I is responsible for binding to PA, neither MAb prevented LF from binding to activated PA. Although two unique MAbs could protect against anthrax when used alone, even more efficient and broader protection should be gained by combining them with anti-PA MAbs.


Nucleic Acids Research | 2005

Eukaryotic RNases H1 act processively by interactions through the duplex RNA-binding domain

Sergei Gaidamakov; Inna Gorshkova; Peter Schuck; Peter J. Steinbach; Hirofumi Yamada; Robert J. Crouch; Susana M. Cerritelli

Ribonucleases H have mostly been implicated in eliminating short RNA primers used for initiation of lagging strand DNA synthesis. Escherichia coli RNase HI cleaves these RNA–DNA hybrids in a distributive manner. We report here that eukaryotic RNases H1 have evolved to be processive enzymes by attaching a duplex RNA-binding domain to the RNase H region. Highly conserved amino acids of the duplex RNA-binding domain are required for processivity and nucleic acid binding, which leads to dimerization of the protein. The need for a processive enzyme underscores the importance in eukaryotic cells of processing long hybrids, most of which remain to be identified. However, long RNA–DNA hybrids formed during immunoglobulin class-switch recombination are potential targets for RNase H1 in the nucleus. In mitochondria, where RNase H1 is essential for DNA formation during embryogenesis, long hybrids may be involved in DNA replication.


Langmuir | 2008

Bayesian Analysis of Heterogeneity in the Distribution of Binding Properties of Immobilized Surface Sites

Inna Gorshkova; Juraj Svitel; Faezeh Razjouyan; Peter Schuck

Once a homogeneous ensemble of a protein ligand is taken from solution and immobilized to a surface, for many reasons the resulting ensemble of surface binding sites to soluble analytes may be heterogeneous. For example, this can be due to the intrinsic surface roughness causing variations in the local microenvironment, nonuniform density distribution of polymeric linkers, or nonuniform chemical attachment producing different protein orientations and conformations. We previously described a computational method for determining the distribution of affinity and rate constants of surface sites from analysis of experimental surface binding data. It fully exploits the high signal/noise ratio and reproducibility provided by optical biosensor technology, such as surface plasmon resonance. Since the computational analysis is ill conditioned, the previous approach used a regularization strategy assuming a priori all binding parameters to be equally likely, resulting in the broadest possible parameter distribution consistent with the experimental data. We now extended this method in a Bayesian approach to incorporate the opposite assumption, i.e., that the surface sites a priori are expected to be uniform (as one would expect in free solution). This results in a distribution of binding parameters as close to monodispersity as possible given the experimental data. Using several model protein systems immobilized on a carboxymethyl dextran surface and probed with surface plasmon resonance, we show microheterogeneity of the surface sites in addition to broad populations of significantly altered affinity. The distributions obtained are highly reproducible. Immobilization conditions and the total surface density of immobilized sites can have a substantial impact on the functional distribution of the binding sites.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Tyrosine sulfation in the second variable loop (V2) of HIV-1 gp120 stabilizes V2–V3 interaction and modulates neutralization sensitivity

Raffaello Cimbro; Thomas Gallant; Michael A. Dolan; Christina Guzzo; Peng Zhang; Yin Lin; Huiyi Miao; Donald Van Ryk; James Arthos; Inna Gorshkova; Patrick H. Brown; Darrell E. Hurt; Paolo Lusso

Significance Despite intensive efforts, the structure of the native HIV-1 envelope trimer—the sole relevant target for vaccine design—has remained elusive. Our work identifies a key structural constraint that stabilizes the native envelope conformation and modulates its sensitivity to neutralization. We show that this constraint is established by previously unrecognized sulfated tyrosines within the second variable loop (V2) of the envelope glycoprotein subunit gp120, which mediate intramolecular interaction with the base of the third variable loop, V3. Strikingly, the V2 sulfotyrosines functionally mimic those present in the N terminus of the CCR5 coreceptor, which bind to the same V3 region. Our results shed light on the mechanisms adopted by HIV-1 to elude immunologic control and open new perspectives for vaccine design. Elicitation of broadly neutralizing antibodies is essential for the development of a protective vaccine against HIV-1. However, the native HIV-1 envelope adopts a protected conformation that conceals highly conserved sites of vulnerability from antibody recognition. Although high-definition structures of the monomeric core of the envelope glycoprotein subunit gp120 and, more recently, of a stabilized soluble gp140 trimer have been solved, fundamental aspects related to the conformation and function of the native envelope remain unresolved. Here, we show that the conserved central region of the second variable loop (V2) of gp120 contains sulfated tyrosines (Tys173 and Tys177) that in the CD4-unbound prefusion state mediate intramolecular interaction between V2 and the conserved base of the third variable loop (V3), functionally mimicking sulfated tyrosines in CCR5 and anti–coreceptor-binding-site antibodies such as 412d. Recombinant gp120 expressed in continuous cell lines displays low constitutive levels of V2 tyrosine sulfation, which can be enhanced markedly by overexpression of the tyrosyl sulfotransferase TPST2. In contrast, virion-associated gp120 produced by primary CD4+ T cells is inherently highly sulfated. Consistent with a functional role of the V2 sulfotyrosines, enhancement of tyrosine sulfation decreased binding and neutralization of HIV-1 BaL by monomeric soluble CD4, 412d, and anti-V3 antibodies and increased recognition by the trimer-preferring antibodies PG9, PG16, CH01, and PGT145. Conversely, inhibition of tyrosine sulfation increased sensitivity to soluble CD4, 412d, and anti-V3 antibodies and diminished recognition by trimer-preferring antibodies. These results identify the sulfotyrosine-mediated V2–V3 interaction as a critical constraint that stabilizes the native HIV-1 envelope trimer and modulates its sensitivity to neutralization.


Methods | 2013

A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis

Huaying Zhao; Inna Gorshkova; Gregory L. Fu; Peter Schuck

The application of optical biosensors in the study of macromolecular interactions requires immobilization of one binding partner to the surface. It is often highly desirable that the immobilization is uniform and does not affect the thermodynamic and kinetic binding parameters to soluble ligands. To achieve this goal, a variety of sensor surfaces, coupling strategies and surface chemistries are available. Previously, we have introduced a technique for determining the distribution of affinities and kinetic rate constants from families of binding and dissociation traces acquired at different concentrations of soluble ligand. In the present work, we explore how this affinity distribution analysis can be useful in the assessment and optimization of surface immobilization. With this goal, using an antibody-antigen interaction as a model system, we study the activity, thermodynamic and kinetic binding parameters, and heterogeneity of surface sites produced with different commonly used sensor surfaces, at different total surface densities and with direct immobilization or affinity capture.


Biomedical spectroscopy and imaging | 2013

Surface plasmon resonance applied to G protein-coupled receptors

Silvia Locatelli-Hoops; Alexei A. Yeliseev; Klaus Gawrisch; Inna Gorshkova

G protein-coupled receptors (GPCR) are integral membrane proteins that transmit signals from external stimuli to the cell interior via activation of GTP-binding proteins (G proteins) thereby mediating key sensorial, hormonal, metabolic, immunological, and neurotransmission processes. Elucidating their structure and mechanism of interaction with extracellular and intracellular binding partners is of fundamental importance and highly relevant to rational design of new effective drugs. Surface plasmon resonance (SPR) has become a method of choice for studying biomolecular interactions at interfaces because measurements take place in real-time and do not require labeling of any of the interactants. However, due to the particular challenges imposed by the high hydrophobicity of membrane proteins and the great diversity of receptor-stimulating ligands, the application of this technique to characterize interactions of GPCR is still in the developmental phase. Here we give an overview of the principle of SPR and analyze current approaches for the preparation of the sensor chip surface, capture and stabilization of GPCR, and experimental design to characterize their interaction with ligands, G proteins and specific antibodies.


Biochimica et Biophysica Acta | 2013

Expression, surface immobilization, and characterization of functional recombinant cannabinoid receptor CB2

Silvia Locatelli-Hoops; Inna Gorshkova; Klaus Gawrisch; Alexei A. Yeliseev

Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2.

Collaboration


Dive into the Inna Gorshkova's collaboration.

Top Co-Authors

Avatar

Peter Schuck

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert J. Crouch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert H. Purcell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexei A. Yeliseev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Faezeh Razjouyan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Huaying Zhao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juan S. Bonifacino

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juraj Svitel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Klaus Gawrisch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patrick H. Brown

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge