Inna Kalt
Bar-Ilan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Inna Kalt.
ACS Applied Materials & Interfaces | 2014
Matias Sametband; Inna Kalt; Aharon Gedanken; Ronit Sarid
Graphene oxide and its derivatives have lately been the subject of increased attention in the field of bioscience and biotechnology. In this article, we report on the use of graphene oxide (GO) derivatives to inhibit herpes simplex virus type-1 (HSV-1) infections, mimicking the cell surface receptor heparan sulfate, and the GO derivatives compete with the latter in binding HSV-1. The inhibition does not affect cell-to-cell spreading. Media content has a significant effect on the inhibition properties of the nanomaterials. These have no cytotoxic effect, suggesting that this is a promising approach for the development of antiviral surfaces and for diagnostic purposes.
PLOS ONE | 2012
Inna Kalt; Ayelet Levy; Tatyana Borodianskiy-Shteinberg; Ronit Sarid
The human glioma tumor suppressor candidate region 2 gene product, GLTSCR2, also called ‘protein interacting with carboxyl terminus 1’ (PICT-1), has been implicated in the regulation of two major tumor suppressor proteins, PTEN and p53, and reported to bind the membrane-cytoskeleton regulator of cell signaling, Merlin. PICT-1 is a nucleolar protein, conserved among eukaryotes, and its yeast homolog has been functionally associated with ribosomal RNA processing. By means of confocal microscopy of EGFP and myc-tagged PICT-1 fusion proteins, we delineate that the nucleolar localization of PICT-1 is mediated by two independent nucleolar localization sequences (NoLS). Unlike most NoLSs, these NoLSs are relatively long with flexible boundaries and contain arginine and leucine clusters. In addition, we show that PICT-1 exhibits a nucleolar distribution similar to proteins involved in ribosomal RNA processing, yet does not colocalize precisely with either UBF1 or Fibrillarin under normal or stressed conditions. Identification of the precise location of PICT-1 and the signals that mediate its nucleolar localization is an important step towards advancing our understanding of the demonstrated influence of this protein on cell fate and tumorigenesis.
Methods of Molecular Biology | 2009
Inna Kalt; Shiri-Rivka Masa; Ronit Sarid
In 1994, the Kaposis sarcoma-associated herpesvirus (KSHV/HHV-8) was identified as the etiologic agent of Kaposis sarcoma (KS). KSHV has since been associated with two additional malignancies: primary effusion lymphoma and multicentric Castlemans disease. In this chapter, we describe the current understanding of the pathogenesis, transmission, and prevalence of KSHV, and its association mainly with KS. We describe evidence demonstrating that KSHV is a causative agent for KS, and we present other factors that possibly contribute to the incidence of KS. We compare worldwide data on the prevalence of KS and of KSHV infection. Specific viral genes that may induce KS tumors or enable their growth also are described. Finally, we discuss the implications of the transmission modes and epidemiology of this virus on recommendations for KSHV screening of tissues and blood products before transplantation or transfusion.
Journal of Virology | 2010
Inna Kalt; Tatyana Borodianskiy-Shteinberg; Adi Schachor; Ronit Sarid
ABSTRACT KS-Bcl-2, encoded by Kaposis sarcoma-associated herpesvirus (KSHV), is a structural and functional homologue of the Bcl-2 family of apoptosis regulators. Like several other Bcl-2 family members, KS-Bcl-2 protects cells from apoptosis and autophagy. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we identified a novel KS-Bcl-2-interacting protein, referred to as protein interacting with carboxyl terminus 1 (PICT-1), encoded by a candidate tumor suppressor gene, GLTSCR2. Confocal laser scanning microscopy revealed nucleolar localization of PICT-1, whereas KS-Bcl-2 was located mostly at the mitochondrial membranes with a small fraction in the nucleoli. Ectopic expression of PICT-1 resulted in a large increase in the nucleolar fraction of KS-Bcl-2, and only a minor fraction remained in the cytoplasm. Furthermore, knockdown of endogenous PICT-1 abolished the nucleolar localization of KS-Bcl-2. However, ectopically expressed PICT-1 did not alter the cellular distribution of human Bcl-2. Subsequent analysis mapped the crucial amino acid sequences of both KS-Bcl-2 and PICT-1 required for their interaction and for KS-Bcl-2 targeting to the nucleolus. Functional studies suggest a correlation between nucleolar targeting of KS-Bcl-2 by PICT-1 and reduction of the antiapoptotic activity of KS-Bcl-2. Thus, these studies demonstrate a cellular mechanism to sequester KS-Bcl-2 from the mitochondria and to downregulate its virally encoded antiapoptotic activity. Additional characterization of the interaction of KS-Bcl-2 and PICT-1 is likely to shed light on the functions of both proteins.
Journal of Virology | 2015
Anastasia Gelgor; Inna Kalt; Shir Bergson; Kevin Brulois; Jae U. Jung; Ronit Sarid
ABSTRACT The Kaposis sarcoma-associated herpesvirus (KSHV) open reading frame 16 (orf16) encodes a viral Bcl-2 (vBcl-2) protein which shares sequence and functional homology with the Bcl-2 family. Like its cellular homologs, vBcl-2 protects various cell types from apoptosis and can also negatively regulate autophagy. vBcl-2 is transcribed during lytic infection; however, its exact function has not been determined to date. By using bacterial artificial chromosome 16 (BAC16) clone carrying the full-length KSHV genome, we have generated recombinant KSHV mutants that fail to express vBcl-2 or express mCherry-tagged vBcl-2. We show that the vBcl-2 protein is expressed at relatively low levels during lytic induction and that a lack of vBcl-2 largely reduces the efficiency of KSHV reactivation in terms of lytic gene expression, viral DNA replication, and production of infectious particles. In contrast, the establishment of latency was not affected by the absence of vBcl-2. Our findings suggest an important role for vBcl-2 during initial phases of lytic reactivation and/or during subsequent viral propagation. Given the known functions of vBcl-2 in regulating apoptosis and autophagy, which involve its direct interaction with cellular proteins and thus require high levels of protein expression, it appears that vBcl-2 may have additional regulatory functions that do not depend on high levels of protein expression. IMPORTANCE The present study shows for the first time the expression of endogenous vBcl-2 protein in KSHV-infected cell lines and demonstrates the importance of vBcl-2 during the initial phases of lytic reactivation and/or during its subsequent propagation. It is suggested that vBcl-2 has additional regulatory functions beyond apoptosis and autophagy repression that do not depend on high levels of protein expression.
Journal of The American Academy of Dermatology | 2012
Iris Amitay-Laish; Ronit Sarid; Dan Ben-Amitai; Inna Kalt; Shiri Rivka Masa; Michael David; Meora Feinmesser; Emmilia Hodak
BACKGROUND Human herpesvirus (HHV) 8, an essential etiologic agent of Kaposi sarcoma, is also associated with several lymphoproliferative disorders. The involvement of HHV 8 in mycosis fungoides (MF) and large plaque parapsoriasis (LPP) is controversial, with contradictory reports from various countries worldwide. OBJECTIVE We sought to investigate the presence of the HHV 8 genome in skin lesions of LPP and early-stage sporadic, familial, and juvenile MF in patients in Israel. METHODS Archival paraffin-embedded and frozen samples from skin biopsies of untreated patients with LPP and early-stage MF performed in 1990 through 2006 were randomly collected from the department of dermatology of a tertiary medical center in central Israel. DNA was extracted, and a TaqMan-based real-time polymerase chain reaction assay specific for the K6 gene region was used to detect the HHV 8 genome. RESULTS A total of 46 biopsies were sampled from 11 patients with LPP and 35 with early-stage MF (17 adults with sporadic MF, 10 children, and 8 patients with familial MF). In all, 44 samples were negative for HHV 8 DNA; two samples from adults with sporadic MF were positive. LIMITATIONS The presence of HHV 8 antibodies or virus sequences was not assessed in peripheral blood. CONCLUSION The results of this study, conducted in a region relatively endemic for HHV 8, support most earlier studies showing a lack of association of HHV 8 infection with LPP and sporadic adult-type MF. To our knowledge, the lack of association of HHV 8 infection with juvenile and familial MF has not been previously reported.
Journal of Virology | 2014
Shir Bergson; Inna Kalt; Inbal Itzhak; Kevin Brulois; Jae U. Jung; Ronit Sarid
ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV-8), is a cancer-related human virus, classified as a member of the Gammaherpesvirinae subfamily. We report here the construction of a dual fluorescent-tagged KSHV genome (BAC16-mCherry-ORF45), which constitutively expresses green fluorescent protein (GFP) and contains the tegument multifunctional ORF45 protein as a fusion protein with monomeric Cherry fluorescent protein (mCherry). We confirmed that this virus is properly expressed and correctly replicates and that the mCherry-ORF45 protein is incorporated into the virions. Using this labeled virus, we describe the dynamics of mCherry-ORF45 expression and localization in newly infected cells as well as in latently infected cells undergoing lytic induction and show that mCherry can be used to monitor cells undergoing the lytic viral cycle. This virus is likely to enable future studies monitoring the dynamics of viral trafficking and tegumentation during viral ingress and egress. IMPORTANCE The present study describes the construction and characterization of a new recombinant KSHV genome BAC16 clone which expresses mCherry-tagged ORF45. This virus enables the tracking of cells undergoing lytic infection and can be used to address issues related to the trafficking and maturation pathways of KSHV virions.
Bioconjugate Chemistry | 2017
Archana R. Deokar; Anjani P. Nagvenkar; Inna Kalt; Lior Shani; Y. Yeshurun; Aharon Gedanken; Ronit Sarid
The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between ∼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (∼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1.
Oncotarget | 2018
Anastasia Gelgor; Chen Gam ze Letova; Yana Yegorov; Inna Kalt; Ronit Sarid
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a human tumorigenic virus exhibiting two forms of infection, latent and lytic. Latent infection is abortive and allows the virus to establish lifelong infection, while lytic infection is productive, and is needed for virus dissemination within the host and between hosts. Latent infection may reactivate and switch towards the lytic cycle. This switch is a critical step in the maintenance of long-term infection and for the development of KSHV-related neoplasms. In this study, we examined the effect of nucleolar stress, manifested by failure in ribosome biogenesis or function and often coupled with p53 activation, on lytic reactivation of KSHV. To this end, we induced nucleolar stress by treatment with Actinomycin D, CX-5461 or BMH-21. Treatment with these compounds alone did not induce the lytic cycle. However, enhancement of the lytic cycle by these compounds was evident when combined with expression of the viral protein K-Rta. Further experiments employing combined treatments with Nutlin-3, knock-down of p53 and isogenic p53+/+ and p53-/- cells indicated that the enhancement of lytic reactivation by nucleolar stress does not depend on p53. Thus, our study identifies nucleolar stress as a novel regulator of KSHV infection, which synergizes with K-Rta expression to increase lytic reactivation. This suggests that certain therapeutic interventions, which induce nucleolar stress, may affect the outcome of KSHV infection.
Virology | 2016
Shir Bergson; Inbal Itzhak; Talya Wasserman; Anastasia Gelgor; Inna Kalt; Ronit Sarid
Kaposis sarcoma-associated herpesvirus (KSHV) is implicated in the etiology of several human malignancies. KSHV open reading frame (orf) 35 encodes a conserved gammaherpesvirus protein with an, as yet, unknown function. Employing the bacterial artificial chromosome (BAC) system, we generated a recombinant viral clone that fails to express ORF35 (BAC16-ORF35-stop) but preserves intact adjacent and overlapping reading frames. Using this construct, we studied the role of this previously uncharacterized gene product during lytic reactivation of KSHV. Upon lytic reactivation, the ORF35-stop recombinant virus displayed significantly reduced lytic viral gene expression, viral DNA replication, and progeny virus production as compared to control wild-type virus. Exogenous expression of ORF35-Flag reversed the effects of ORF35 deficiency. These results demonstrate that ORF35 is important for efficient lytic virus reactivation.