Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inna Kuperstein is active.

Publication


Featured researches published by Inna Kuperstein.


Nature Communications | 2014

Concomitant Notch activation and p53 deletion trigger epithelial-to-mesenchymal transition and metastasis in mouse gut

Chanrion M; Inna Kuperstein; Barrière C; El Marjou F; David P. A. Cohen; Vignjevic D; Stimmer L; Paul-Gilloteaux P; Bièche I; Tavares Sdos R; Boccia Gf; Cacheux W; Meseure D; Fre S; Loredana Martignetti; Legoix-Né P; Girard E; Fetler L; Emmanuel Barillot; Louvard D; Andrei Zinovyev; Sylvie Robine

Epithelial-to-mesenchymal transition-like (EMT-like) is a critical process allowing initiation of metastases during tumour progression. Here, to investigate its role in intestinal cancer, we combine computational network-based and experimental approaches to create a mouse model with high metastatic potential. Construction and analysis of this network map depicting molecular mechanisms of EMT regulation based on the literature suggests that Notch activation and p53 deletion have a synergistic effect in activating EMT-like processes. To confirm this prediction, we generate transgenic mice by conditionally activating the Notch1 receptor and deleting p53 in the digestive epithelium (NICD/p53−/−). These mice develop metastatic tumours with high penetrance. Using GFP lineage tracing, we identify single malignant cells with mesenchymal features in primary and metastatic tumours in vivo. The development of such a model that recapitulates the cellular features observed in invasive human colorectal tumours is appealing for innovative drug discovery.


ONCOGENESIS , 4 (ARTN e16) (2015) | 2015

Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps

Inna Kuperstein; Eric Bonnet; Nguyen Ha; David P. A. Cohen; Eric Viara; Luca Grieco; Simon Fourquet; Laurence Calzone; Russo C; Kondratova M; Marie Dutreix; Emmanuel Barillot; Andrei Zinovyev

Cancerogenesis is driven by mutations leading to aberrant functioning of a complex network of molecular interactions and simultaneously affecting multiple cellular functions. Therefore, the successful application of bioinformatics and systems biology methods for analysis of high-throughput data in cancer research heavily depends on availability of global and detailed reconstructions of signalling networks amenable for computational analysis. We present here the Atlas of Cancer Signalling Network (ACSN), an interactive and comprehensive map of molecular mechanisms implicated in cancer. The resource includes tools for map navigation, visualization and analysis of molecular data in the context of signalling network maps. Constructing and updating ACSN involves careful manual curation of molecular biology literature and participation of experts in the corresponding fields. The cancer-oriented content of ACSN is completely original and covers major mechanisms involved in cancer progression, including DNA repair, cell survival, apoptosis, cell cycle, EMT and cell motility. Cell signalling mechanisms are depicted in detail, together creating a seamless ‘geographic-like’ map of molecular interactions frequently deregulated in cancer. The map is browsable using NaviCell web interface using the Google Maps engine and semantic zooming principle. The associated web-blog provides a forum for commenting and curating the ACSN content. ACSN allows uploading heterogeneous omics data from users on top of the maps for visualization and performing functional analyses. We suggest several scenarios for ACSN application in cancer research, particularly for visualizing high-throughput data, starting from small interfering RNA-based screening results or mutation frequencies to innovative ways of exploring transcriptomes and phosphoproteomes. Integration and analysis of these data in the context of ACSN may help interpret their biological significance and formulate mechanistic hypotheses. ACSN may also support patient stratification, prediction of treatment response and resistance to cancer drugs, as well as design of novel treatment strategies.


BMC Systems Biology | 2013

NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps

Inna Kuperstein; David P. A. Cohen; Stuart Pook; Eric Viara; Laurence Calzone; Emmanuel Barillot; Andrei Zinovyev

BackgroundMolecular biology knowledge can be formalized and systematically represented in a computer-readable form as a comprehensive map of molecular interactions. There exist an increasing number of maps of molecular interactions containing detailed and step-wise description of various cell mechanisms. It is difficult to explore these large maps, to organize discussion of their content and to maintain them. Several efforts were recently made to combine these capabilities together in one environment, and NaviCell is one of them.ResultsNaviCell is a web-based environment for exploiting large maps of molecular interactions, created in CellDesigner, allowing their easy exploration, curation and maintenance. It is characterized by a combination of three essential features: (1) efficient map browsing based on Google Maps; (2) semantic zooming for viewing different levels of details or of abstraction of the map and (3) integrated web-based blog for collecting community feedback. NaviCell can be easily used by experts in the field of molecular biology for studying molecular entities of interest in the context of signaling pathways and crosstalk between pathways within a global signaling network. NaviCell allows both exploration of detailed molecular mechanisms represented on the map and a more abstract view of the map up to a top-level modular representation. NaviCell greatly facilitates curation, maintenance and updating the comprehensive maps of molecular interactions in an interactive and user-friendly fashion due to an imbedded blogging system.ConclusionsNaviCell provides user-friendly exploration of large-scale maps of molecular interactions, thanks to Google Maps and WordPress interfaces, with which many users are already familiar. Semantic zooming which is used for navigating geographical maps is adopted for molecular maps in NaviCell, making any level of visualization readable. In addition, NaviCell provides a framework for community-based curation of maps.


Mutagenesis | 2015

The shortest path is not the one you know: application of biological network resources in precision oncology research

Inna Kuperstein; Luca Grieco; David P. A. Cohen; Denis Thieffry; Andrei Zinovyev; Emmanuel Barillot

Several decades of molecular biology research have delivered a wealth of detailed descriptions of molecular interactions in normal and tumour cells. This knowledge has been functionally organised and assembled into dedicated biological pathway resources that serve as an invaluable tool, not only for structuring the information about molecular interactions but also for making it available for biological, clinical and computational studies. With the advent of high-throughput molecular profiling of tumours, close to complete molecular catalogues of mutations, gene expression and epigenetic modifications are available and require adequate interpretation. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular profiles of tumours. Making sense out of these descriptions requires biological pathway resources for functional interpretation of the data. In this review, we describe the available biological pathway resources, their characteristics in terms of construction mode, focus, aims and paradigms of biological knowledge representation. We present a new resource that is focused on cancer-related signalling, the Atlas of Cancer Signalling Networks. We briefly discuss current approaches for data integration, visualisation and analysis, using biological networks, such as pathway scoring, guilt-by-association and network propagation. Finally, we illustrate with several examples the added value of data interpretation in the context of biological networks and demonstrate that it may help in analysis of high-throughput data like mutation, gene expression or small interfering RNA screening and can guide in patients stratification. Finally, we discuss perspectives for improving precision medicine using biological network resources and tools. Taking into account the information about biological signalling machinery in cells may help to better interpret molecular patterns of tumours and enable to put precision oncology into general clinical practice.


Nucleic Acids Research | 2015

NaviCell Web Service for network-based data visualization

Eric Bonnet; Eric Viara; Inna Kuperstein; Laurence Calzone; David P. A. Cohen; Emmanuel Barillot; Andrei Zinovyev

Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases.


Biochemical and Biophysical Research Communications | 2015

Network-based approaches for drug response prediction and targeted therapy development in cancer.

Mathurin Dorel; Emmanuel Barillot; Andrei Zinovyev; Inna Kuperstein

Signaling pathways implicated in cancer create a complex network with numerous regulatory loops and redundant pathways. This complexity explains frequent failure of one-drug-one-target paradigm of treatment, resulting in drug resistance in patients. To overcome the robustness of cell signaling network, cancer treatment should be extended to a combination therapy approach. Integrating and analyzing patient high-throughput data together with the information about biological signaling machinery may help deciphering molecular patterns specific to each patient and finding the best combinations of candidates for therapeutic targeting. We review state of the art in the field of targeted cancer medicine from the computational systems biology perspective. We summarize major signaling network resources and describe their characteristics with respect to applicability for drug response prediction and intervention targets suggestion. Thus discuss methods for prediction of drug sensitivity and intervention combinations using signaling networks together with high-throughput data. Gradual integration of these approaches into clinical routine will improve prediction of response to standard treatments and adjustment of intervention schemes.


Clinical Cancer Research | 2017

Drug-Driven Synthetic Lethality: Bypassing Tumor Cell Genetics with a Combination of AsiDNA and PARP Inhibitors

Wael Jdey; sylvain Thierry; Christophe Russo; Flavien Devun; Muthana Al Abo; Patricia Noguiez-Hellin; Jian-Sheng Sun; Emmanuel Barillot; Andrei Zinovyev; Inna Kuperstein; Yves Pommier; Marie Dutreix

Purpose: Cancer treatments using tumor defects in DNA repair pathways have shown promising results but are restricted to small subpopulations of patients. The most advanced drugs in this field are PARP inhibitors (PARPi), which trigger synthetic lethality in tumors with homologous recombination (HR) deficiency. Using AsiDNA, an inhibitor of HR and nonhomologous end joining, together with PARPi should allow bypassing the genetic restriction for PARPi efficacy. Experimental Design: We characterized the DNA repair inhibition activity of PARPi (olaparib) and AsiDNA by monitoring repair foci formation and DNA damage. We analyzed the cell survival to standalone and combined treatments of 21 tumor cells and three nontumor cells. In 12 breast cancer (BC) cell lines, correlation with sensitivity to each drug and transcriptome were statistically analyzed to identify resistance pathways. Results: Molecular analyses demonstrate that olaparib and AsiDNA respectively prevent recruitment of XRCC1 and RAD51/53BP1 repair enzymes to damage sites. Combination of both drugs increases the accumulation of unrepaired damage resulting in an increase of cell death in all tumor cells. In contrast, nontumor cells do not show an increase of DNA damage nor lethality. Analysis of multilevel omics data from BC cells highlighted different DNA repair and cell-cycle molecular profiles associated with resistance to AsiDNA or olaparib, rationalizing combined treatment. Treatment synergy was also confirmed with six other PARPi in development. Conclusions: Our results highlight the therapeutic interest of combining AsiDNA and PARPi to recapitulate synthetic lethality in all tumors independently of their HR status. Clin Cancer Res; 23(4); 1001–11. ©2016 AACR.


PLOS Computational Biology | 2013

Synthetic Lethality between Gene Defects Affecting a Single Non-essential Molecular Pathway with Reversible Steps

Andrei Zinovyev; Inna Kuperstein; Emmanuel Barillot; Wolf Dietrich Heyer

Systematic analysis of synthetic lethality (SL) constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.


Database | 2017

NaviCom: a web application to create interactive molecular network portraits using multi-level omics data

Mathurin Dorel; Eric Viara; Emmanuel Barillot; Andrei Zinovyev; Inna Kuperstein

Abstract Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. Database URL: NaviCom is available at https://navicom.curie.fr


Methods of Molecular Biology | 2013

From a Biological Hypothesis to the Construction of a Mathematical Model

David P. A. Cohen; Inna Kuperstein; Emmanuel Barillot; Andrei Zinovyev; Laurence Calzone

Mathematical models serve to explain complex biological phenomena and provide predictions that can be tested experimentally. They can provide plausible scenarios of a complex biological behavior when intuition is not sufficient anymore. The process from a biological hypothesis to a mathematical model might be challenging for biologists that are not familiar with mathematical modeling. In this chapter we discuss a possible workflow that describes the steps to be taken starting from a biological hypothesis on a biochemical cellular mechanism to the construction of a mathematical model using the appropriate formalism. An important part of this workflow is formalization of biological knowledge, which can be facilitated by existing tools and standards developed by the systems biology community. This chapter aims at introducing modeling to experts in molecular biology that would like to convert their hypotheses into mathematical models.

Collaboration


Dive into the Inna Kuperstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Barillot

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luca Grieco

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piotr Gawron

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge