Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inna S. Lykova is active.

Publication


Featured researches published by Inna S. Lykova.


Mineralogical Magazine | 2014

New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6

Igor V. Pekov; N. V. Zubkova; Vasiliy O. Yapaskurt; Dmitriy I. Belakovskiy; Inna S. Lykova; M. F. Vigasina; Evgeny G. Sidorov; D. Yu. Pushcharovsky

Abstract A new mineral, yurmarinite, Na7(Fe3+,Mg,Cu)4(AsO4)6, occurs in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with hatertite, bradaczekite, johillerite, hematite, tenorite, tilasite and aphthitalite. Yurmarinite occurs as well-shaped, equant crystals up to 0.3 mm in size, their clusters up to 0.5 mm and thin, interrupted crystal crusts up to 3 mm × 3 mm on volcanic scoria. Crystal forms are {101}, {011}, {100}, {110} and {001}. Yurmarinite is transparent, pale green or pale yellowish green to colourless. The lustre is vitreous and the mineral is brittle. The Mohs hardness is ~4½. One direction of imperfect cleavage was observed, the fracture is uneven. D(calc.) is 4.00 g cm-3. Yurmarinite is optically uniaxial (-), ω = 1.748(5), ε = 1.720(3). The Raman spectrum is given. The chemical composition (wt.%, electron microprobe data) is Na2O 16.85, K2O 0.97, CaO 1.28, MgO 2.33, MnO 0.05, CuO 3.17, ZnO 0.97, Al2 O3 0.99, Fe2O3 16.44, TiO2 0.06, P2O5 0.12, V2O5 0.08, As2O5 56.68, total 99.89. The empirical formula, calculated on the basis of 24 O atoms per formula unit, is (Na6.55Ca0.28K0.22)∑7.05(Fe3+2.48Mg0.70Cu0.48Al0.23Zn0.14 Ti0.01Mn0.01)∑4.05(As5.94P0.02V0.01)∑5.97O24. Yurmarinite is rhombohedral, R3̅ c, a = 13.7444(2), c = 18.3077(3) Å, V = 2995.13(8) Å3, Z = 6. The strongest reflections in the X-ray powder pattern [d,Å (I)(hkl)] are: 7.28(45)(012); 4.375(33)(211); 3.440(35)(220); 3.217(36)(131,214); 2.999(30)(223); 2.841(100)(125); 2.598(43)(410). The crystal structure was solved from single-crystal X-ray diffraction data to R = 0.0230. The structure is based on a 3D heteropolyhedral framework formed by M4O18 clusters (M = Fe3+ > Mg,Cu) linked with AsO4 tetrahedra. Sodium atoms occupy two octahedrally coordinated sites in the voids of the framework. In terms of structure, yurmarinite is unique among minerals but isotypic with several synthetic compounds with the general formula (Na7-x⃞x)(M3+3+xM2+1-x)(T5+O4)2 in which T = As or P, M3+ = Fe or Al, M2+ = Fe and 0 ≤ x ≤ 1. The mineral is named in honour of the Russian mineralogist, petrologist and specialist in studies of ore deposits, Professor Yuriy B. Marin (b. 1939). The paper also contains a description of the Arsenathaya fumarole and an overview of arsenate minerals formed in volcanic exhalations.


Mineralogical Magazine | 2013

Manganoblödite, Na2Mn(SO4)2·4H2O, and cobaltoblödite, Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA

Anatoly V. Kasatkin; Fabrizio Nestola; Jakub Plášil; J. Marty; Dmitriy I. Belakovskiy; Atali A. Agakhanov; S. J. Mills; Danilo Pedron; Arianna Lanza; M. Favaro; S. Bianchin; Inna S. Lykova; Viktor Goliáš; William D. Birch

Abstract Two new minerals - manganoblödite (IMA2012-029), ideally Na2Mn(SO4)2·4H2O, and cobaltoblödite (IMA2012-059), ideally Na2Co(SO4)2·4H2O, the Mn-dominant and Co-dominant analogues of blödite, respectively, were found at the Blue Lizard mine, San Juan County, Utah, USA. They are closely associated with blödite (Mn-Co-Ni-bearing), chalcanthite, gypsum, sideronatrite, johannite, quartz and feldspar. Both new minerals occur as aggregates of anhedral grains up to 60 μm (manganoblödite) and 200 μm (cobaltoblödite) forming thin crusts covering areas up to 2 × 2 cm on the surface of other sulfates. Both new species often occur as intimate intergrowths with each other and also with Mn-Co-Ni-bearing blödite. Manganoblödite and cobaltoblödite are transparent, colourless in single grains and reddish-pink in aggregates and crusts, with a white streak and vitreous lustre. Their Mohs‘ hardness is ~2½. They are brittle, have uneven fracture and no obvious parting or cleavage. The measured and calculated densities are Dmeas = 2.25(2) g cm−3 and Dcalc = 2.338 g cm−3 for manganoblödite and Dmeas = 2.29(2) g cm−3 and Dcalc = 2.347 g cm−3 for cobaltoblödite. Optically both species are biaxial negative. The mean refractive indices are α = 1.493(2), β = 1.498(2) and γ = 1.501(2) for manganoblödite and α = 1.498(2), β = 1.503(2) and γ = 1.505(2) for cobaltoblödite. The chemical composition of manganoblödite (wt.%, electron-microprobe data) is: Na2O 16.94, MgO 3.29, MnO 8.80, CoO 2.96, NiO 1.34, SO3 45.39, H2O (calc.) 20.14, total 98.86. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Mn0.44Mg0.29Co0.14Ni0.06)Σ0.93S2.03O8·4H2O. The chemical composition of cobaltoblödite (wt.%, electron-microprobe data) is: Na2O 17.00, MgO 3.42, MnO 3.38, CoO 7.52, NiO 2.53, SO3 45.41, H2O (calc.) 20.20, total 99.46. The empirical formula, calculated on the basis of 12 O a.p.f.u., is: Na1.96(Co0.36Mg0.30Mn0.17Ni0.12)Σ 0.95S2.02O8·4H2O. Both minerals are monoclinic, space group P21/a, with a = 11.137(2), b = 8.279(1), c = 5.5381(9) Å, β = 100.42(1)°, V = 502.20(14) Å3 and Z = 2 (manganoblödite); and a = 11.147(1), b = 8.268(1), C = 5.5396(7) Å, β = 100.517(11)°, V = 501.97(10) Å3 and Z = 2 (cobaltoblödite). The strongest diffractions from X-ray powder pattern [listed as (d,Å(I)(hkl)] are for manganoblödite: 4.556(70)(210, 011); 4.266(45)(2̅01); 3.791(26)(2̅11); 3.338(21)(310); 3.291(100)(220, 021), 3.256(67)(211,1̅21), 2.968(22)(2̅21), 2.647(24)(4̅01); for cobaltoblödite: 4.551(80)(210, 011); 4.269(50)(2̅01); 3.795(18)(2̅11); 3.339(43)(310); 3.29(100)(220, 021), 3.258(58)(211, 1̅21), 2.644(21)( 4̅01), 2.296(22)( 1̅22). The crystal structures of both minerals were refined by single-crystal X-ray diffraction to R1 = 0.0459 (manganoblödite) and R1 = 0.0339 (cobaltoblödite).


Geology of Ore Deposits | 2013

Vigrishinite, Zn2Ti4-xSi4O14(OH,H2O,)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia

Igor V. Pekov; Sergey N. Britvin; N. V. Zubkova; N. V. Chukanov; I. A. Bryzgalov; Inna S. Lykova; Dmitriy I. Belakovskiy; D. Yu. Pushcharovsky

A new mineral vigrishinite, epistolite-group member and first layer titanosilicate with species-defining Zn, was found at Mt. Malyi Punkaruaiv, in the Lovozero alkaline complex, Kola Peninsula, Russia. It occurs in a hydrothermally altered peralkaline pegmatite and is associated with microcline, ussingite, aegirine, analcime, gmelinite-Na, and chabazite-Ca. Vigrishinite forms rectangular or irregularly shaped lamellae up to 0.05 × 2 × 3 cm flattened on [001]. They are typically slightly split and show blocky character. The mineral is translucent to transparent and pale pink, yellowish-pinkish or colorless. The luster is vitreous. The Mohs’ hardness is 2.5–3. Vigrishinite is brittle. Cleavage is {001} perfect. Dmeas = 3.03(2), Dcalc = 2.97 g/cm3. The mineral is optically biaxial (−), α = 1.755(5), β = 1.82(1), γ = 1.835(8), 2Vmeas = 45(10)°, 2Vcalc = 50°. IR spectrum is given. The chemical composition (wt %; average of 9 point analyses, H2O is determined by modified Penfield method) is as follows: 0.98 Na2O, 0.30 K2O, 0.56 CaO, 0.05 SrO, 0.44 BaO, 0.36 MgO, 2.09 MnO, 14.39 ZnO, 2.00 Fe2O3, 0.36 Al2O3, 32.29 SiO2, 29.14 TiO2, 2.08 ZrO2, 7.34 Nb2O5, 0.46 F, 9.1 H2O, −0.19 O=F2, total is 101.75. The empirical formula calculated on the basis of Si + Al = 4 is: H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05Ba0.02)Σ1.96(Ti2.68Nb0.41Fe0.183+Zr0.12)Σ3.39(Si3.95Al0.05)Σ420.31F0.18. The simplified formula is: Zn2Ti4−xSi4O14(OH,H2O,□)8 (x < 1). Vigrishinite is triclinic, space group P


Geology of Ore Deposits | 2014

Zvyaginite, NaZnNb2Ti[Si2O7]2O(OH,F)3(H2O)4 + x (x < 1), a new mineral of the epistolite group from the Lovozero Alkaline Pluton, Kola Peninsula, Russia

Igor V. Pekov; Inna S. Lykova; N. V. Chukanov; Vasiliy O. Yapaskurt; Dmitriy I. Belakovskiy; Andrey A. Zolotarev; N. V. Zubkova

\bar 1


European Journal of Mineralogy | 2014

Whitecapsite, a new hydrous iron and trivalent antimony arsenate mineral from the White Caps mine, Nevada, USA

Igor V. Pekov; N. V. Zubkova; Jörg Göttlicher; Vasiliy O. Yapaskurt; N. V. Chukanov; Inna S. Lykova; Dmitry I. Belakovskiy; Martin C. Jensen; Joseph F. Leising; Anthony J. Nikischer; Dmitry Yu. Pushcharovsky

, a = 8.743(9), b = 8.698(9), c = 11.581(11)Å, α = 91.54(8)°, β = 98.29(8)°, γ = 105.65(8)°, V = 837.2(1.5) Å3, Z = 2. The strongest reflections in the X-ray powder pattern (d, Å, −I[hkl]) are: 11.7-67[001], 8.27-50[100], 6.94-43[0


Mineralogical Magazine | 2015

Chrysothallite K6Cu6Tl3+Cl17(OH)4·H2O, a new mineral species from the Tolbachik volcano, Kamchatka, Russia

Igor V. Pekov; N. V. Zubkova; Dmitry I. Belakovskiy; Vasiliy O. Yapaskurt; M. F. Vigasina; Inna S. Lykova; Evgeny G. Sidorov; Dmitry Yu. Pushcharovsky

\bar 1


Mineralogical Magazine | 2014

Nestolaite, CaSeO3·H2O, a new mineral from the Little Eva mine, Grand County, Utah, USA

Anatoly V. Kasatkin; Jakub Plášil; Joe Marty; Atali A. Agakhanov; Dmitriy I. Belakovskiy; Inna S. Lykova

1,


Geology of Ore Deposits | 2010

Jinshanjiangite and bafertisite from the Gremyakha-Vyrmes Alkaline Complex, Kola Peninsula

Inna S. Lykova; I. V. Pekov; N. N. Kononkova; A. K. Shpachenko

\bar 1


Zeitschrift Fur Kristallographie | 2016

The crystal structure of the natural 1,2,4-triazolate compound NaCu2Cl3[N3C2H2]2[NH3]2·4H2O

N. V. Zubkova; N. V. Chukanov; Igor V. Pekov; Gerhard Möhn; Gerald Giester; Vasiliy O. Yapaskurt; Inna S. Lykova; Dmitry Yu. Pushcharovsky

10], 5.73–54[1


Crystallography Reports | 2014

Iron-rich schüllerite from Kahlenberg (Eifel, Germany): Crystal structure and relation to lamprophyllite-group minerals

R. K. Rastsvetaeva; S. M. Aksenov; N. V. Chukanov; Inna S. Lykova; I. A. Verin

\bar 1

Collaboration


Dive into the Inna S. Lykova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. V. Chukanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Evgeny G. Sidorov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sergey N. Britvin

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge