Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Intawat Nookaew is active.

Publication


Featured researches published by Intawat Nookaew.


Nature | 2013

Gut metagenome in European women with normal, impaired and diabetic glucose control

Fredrik H. Karlsson; Valentina Tremaroli; Intawat Nookaew; Göran Bergström; Carl Johan Behre; Björn Fagerberg; Jens Nielsen; Fredrik Bäckhed

Type 2 diabetes (T2D) is a result of complex gene–environment interactions, and several risk factors have been identified, including age, family history, diet, sedentary lifestyle and obesity. Statistical models that combine known risk factors for T2D can partly identify individuals at high risk of developing the disease. However, these studies have so far indicated that human genetics contributes little to the models, whereas socio-demographic and environmental factors have greater influence. Recent evidence suggests the importance of the gut microbiota as an environmental factor, and an altered gut microbiota has been linked to metabolic diseases including obesity, diabetes and cardiovascular disease. Here we use shotgun sequencing to characterize the faecal metagenome of 145 European women with normal, impaired or diabetic glucose control. We observe compositional and functional alterations in the metagenomes of women with T2D, and develop a mathematical model based on metagenomic profiles that identified T2D with high accuracy. We applied this model to women with impaired glucose tolerance, and show that it can identify women who have a diabetes-like metabolism. Furthermore, glucose control and medication were unlikely to have major confounding effects. We also applied our model to a recently described Chinese cohort and show that the discriminant metagenomic markers for T2D differ between the European and Chinese cohorts. Therefore, metagenomic predictive tools for T2D should be specific for the age and geographical location of the populations studied.


Nature Communications | 2012

Symptomatic atherosclerosis is associated with an altered gut metagenome

Fredrik H. Karlsson; Frida Fåk; Intawat Nookaew; Valentina Tremaroli; Björn Fagerberg; Dina Petranovic; Fredrik Bäckhed; Jens Nielsen

Recent findings have implicated the gut microbiota as a contributor of metabolic diseases through the modulation of host metabolism and inflammation. Atherosclerosis is associated with lipid accumulation and inflammation in the arterial wall, and bacteria have been suggested as a causative agent of this disease. Here we use shotgun sequencing of the gut metagenome to demonstrate that the genus Collinsella was enriched in patients with symptomatic atherosclerosis, defined as stenotic atherosclerotic plaques in the carotid artery leading to cerebrovascular events, whereas Roseburia and Eubacterium were enriched in healthy controls. Further characterization of the functional capacity of the metagenomes revealed that patient gut metagenomes were enriched in genes encoding peptidoglycan synthesis and depleted in phytoene dehydrogenase; patients also had reduced serum levels of β-carotene. Our findings suggest that the gut metagenome is associated with the inflammatory status of the host and patients with symptomatic atherosclerosis harbor characteristic changes in the gut metagenome.


Bioinformatics | 2017

PanViz: interactive visualization of the structure of functionally annotated pangenomes

Thomas Lin Pedersen; Intawat Nookaew; David W. Ussery; Maria Månsson

Summary: PanViz is a novel, interactive, visualization tool for pangenome analysis. PanViz allows visualization of changes in gene group (groups of similar genes across genomes) classification as different subsets of pangenomes are selected, as well as comparisons of individual genomes to pangenomes with gene ontology based navigation of gene groups. Furthermore it allows for rich and complex visual querying of gene groups in the pangenome. PanViz visualizations require no external programs and are easily sharable, allowing for rapid pangenome analyses. Availability and Implementation: PanViz is written entirely in JavaScript and is available on https://github.com/thomasp85/PanViz. A companion R package that facilitates the creation of PanViz visualizations from a range of data formats is released through Bioconductor and is available at https://bioconductor.org/packages/PanVizGenerator. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Nucleic Acids Research | 2013

Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods

Leif Väremo; Jens Nielsen; Intawat Nookaew

Gene set analysis (GSA) is used to elucidate genome-wide data, in particular transcriptome data. A multitude of methods have been proposed for this step of the analysis, and many of them have been compared and evaluated. Unfortunately, there is no consolidated opinion regarding what methods should be preferred, and the variety of available GSA software and implementations pose a difficulty for the end-user who wants to try out different methods. To address this, we have developed the R package Piano that collects a range of GSA methods into the same system, for the benefit of the end-user. Further on we refine the GSA workflow by using modifications of the gene-level statistics. This enables us to divide the resulting gene set P-values into three classes, describing different aspects of gene expression directionality at gene set level. We use our fully implemented workflow to investigate the impact of the individual components of GSA by using microarray and RNA-seq data. The results show that the evaluated methods are globally similar and the major separation correlates well with our defined directionality classes. As a consequence of this, we suggest to use a consensus scoring approach, based on multiple GSA runs. In combination with the directionality classes, this constitutes a more thorough basis for an enriched biological interpretation.


PLOS Computational Biology | 2013

The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum

Rasmus Agren; Liming Liu; Saeed Shoaie; Wanwipa Vongsangnak; Intawat Nookaew; Jens Nielsen

We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production.


PLOS Computational Biology | 2012

Reconstruction of Genome-Scale Active Metabolic Networks for 69 Human Cell Types and 16 Cancer Types Using INIT

Rasmus Agren; Sergio Bordel; Adil Mardinoglu; Natapol Pornputtapong; Intawat Nookaew; Jens Nielsen

Development of high throughput analytical methods has given physicians the potential access to extensive and patient-specific data sets, such as gene sequences, gene expression profiles or metabolite footprints. This opens for a new approach in health care, which is both personalized and based on system-level analysis. Genome-scale metabolic networks provide a mechanistic description of the relationships between different genes, which is valuable for the analysis and interpretation of large experimental data-sets. Here we describe the generation of genome-scale active metabolic networks for 69 different cell types and 16 cancer types using the INIT (Integrative Network Inference for Tissues) algorithm. The INIT algorithm uses cell type specific information about protein abundances contained in the Human Proteome Atlas as the main source of evidence. The generated models constitute the first step towards establishing a Human Metabolic Atlas, which will be a comprehensive description (accessible online) of the metabolism of different human cell types, and will allow for tissue-level and organism-level simulations in order to achieve a better understanding of complex diseases. A comparative analysis between the active metabolic networks of cancer types and healthy cell types allowed for identification of cancer-specific metabolic features that constitute generic potential drug targets for cancer treatment.


Nucleic Acids Research | 2012

A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae

Intawat Nookaew; Marta Papini; Natapol Pornputtapong; Gionata Scalcinati; Linn Fagerberg; Matthias Uhlén; Jens Nielsen

RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated with the Illumina platform, and to perform a cross-platform comparison based on the results obtained through Affymetrix microarray. As a case study for our work we, used the Saccharomyces cerevisiae strain CEN.PK 113-7D, grown under two different conditions (batch and chemostat). Here, we asses the influence of genetic variation on the estimation of gene expression level using three different aligners for read-mapping (Gsnap, Stampy and TopHat) on S288c genome, the capabilities of five different statistical methods to detect differential gene expression (baySeq, Cuffdiff, DESeq, edgeR and NOISeq) and we explored the consistency between RNA-seq analysis using reference genome and de novo assembly approach. High reproducibility among biological replicates (correlation ≥0.99) and high consistency between the two platforms for analysis of gene expression levels (correlation ≥0.91) are reported. The results from differential gene expression identification derived from the different statistical methods, as well as their integrated analysis results based on gene ontology annotation are in good agreement. Overall, our study provides a useful and comprehensive comparison between the two platforms (RNA-seq and microrrays) for gene expression analysis and addresses the contribution of the different steps involved in the analysis of RNA-seq data.


Gut | 2012

Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88

Erik Larsson; Valentina Tremaroli; Ying Shiuan Lee; Omry Koren; Intawat Nookaew; Ashwana D. Fricker; Jens Nielsen; Ruth E. Ley; Fredrik Bäckhed

Background The gut microbiota has profound effects on host physiology but local host–microbial interactions in the gut are only poorly characterised and are likely to vary from the sparsely colonised duodenum to the densely colonised colon. Microorganisms are recognised by pattern recognition receptors such as Toll-like receptors, which signal through the adaptor molecule MyD88. Methods To identify host responses induced by gut microbiota along the length of the gut and whether these required MyD88, transcriptional profiles of duodenum, jejunum, ileum and colon were compared from germ-free and conventionally raised wild-type and Myd88−/− mice. The gut microbial ecology was assessed by 454-based pyrosequencing and viruses were analysed by PCR. Results The gut microbiota modulated the expression of a large set of genes in the small intestine and fewer genes in the colon but surprisingly few microbiota-regulated genes required MyD88 signalling. However, MyD88 was essential for microbiota-induced colonic expression of the antimicrobial genes Reg3β and Reg3γ in the epithelium, and Myd88 deficiency was associated with both a shift in bacterial diversity and a greater proportion of segmented filamentous bacteria in the small intestine. In addition, conventionally raised Myd88−/− mice had increased expression of antiviral genes in the colon, which correlated with norovirus infection in the colonic epithelium. Conclusion This study provides a detailed description of tissue-specific host transcriptional responses to the normal gut microbiota along the length of the gut and demonstrates that the absence of MyD88 alters gut microbial ecology.


BMC Systems Biology | 2008

The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: A scaffold to query lipid metabolism

Intawat Nookaew; Michael C. Jewett; Asawin Meechai; Chinae Thammarongtham; Kobkul Laoteng; Supapon Cheevadhanarak; Jens Nielsen; Sakarindr Bhumiratana

BackgroundUp to now, there have been three published versions of a yeast genome-scale metabolic model: iFF708, iND750 and iLL672. All three models, however, lack a detailed description of lipid metabolism and thus are unable to be used as integrated scaffolds for gaining insights into lipid metabolism from multilevel omic measurement technologies (e.g. genome-wide mRNA levels). To overcome this limitation, we reconstructed a new version of the Saccharomyces cerevisiae genome-scale model, iIN800 that includes a more rigorous and detailed description of lipid metabolism.ResultsThe reconstructed metabolic model comprises 1446 reactions and 1013 metabolites. Beyond incorporating new reactions involved in lipid metabolism, we also present new biomass equations that improve the predictive power of flux balance analysis simulations. Predictions of both growth capability and large scale in silico single gene deletions by iIN800 were consistent with experimental data. In addition, 13C-labeling experiments validated the new biomass equations and calculated intracellular fluxes. To demonstrate the applicability of iIN800, we show that the model can be used as a scaffold to reveal the regulatory importance of lipid metabolism precursors and intermediates that would have been missed in previous models from transcriptome datasets.ConclusionPerforming integrated analyses using iIN800 as a network scaffold is shown to be a valuable tool for elucidating the behavior of complex metabolic networks, particularly for identifying regulatory targets in lipid metabolism that can be used for industrial applications or for understanding lipid disease states.


Molecular Systems Biology | 2014

Integration of clinical data with a genome‐scale metabolic model of the human adipocyte

Adil Mardinoglu; Rasmus Agren; Caroline Kampf; Anna Asplund; Intawat Nookaew; Peter Jacobson; Andrew Walley; Philippe Froguel; Lena M.S. Carlsson; Mathias Uhlén; Jens Nielsen

We evaluated the presence/absence of proteins encoded by 14 077 genes in adipocytes obtained from different tissue samples using immunohistochemistry. By combining this with previously published adipocyte‐specific proteome data, we identified proteins associated with 7340 genes in human adipocytes. This information was used to reconstruct a comprehensive and functional genome‐scale metabolic model of adipocyte metabolism. The resulting metabolic model, iAdipocytes1809, enables mechanistic insights into adipocyte metabolism on a genome‐wide level, and can serve as a scaffold for integration of omics data to understand the genotype–phenotype relationship in obese subjects. By integrating human transcriptome and fluxome data, we found an increase in the metabolic activity around androsterone, ganglioside GM2 and degradation products of heparan sulfate and keratan sulfate, and a decrease in mitochondrial metabolic activities in obese subjects compared with lean subjects. Our study hereby shows a path to identify new therapeutic targets for treating obesity through combination of high throughput patient data and metabolic modeling.

Collaboration


Dive into the Intawat Nookaew's collaboration.

Top Co-Authors

Avatar

Jens Nielsen

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

David W. Ussery

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Se-Ran Jun

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Trudy M. Wassenaar

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thidathip Wongsurawat

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bob Olsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Fredrik H. Karlsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Visanu Wanchai

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Hans Wadenvik

Sahlgrenska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge