Ioana Gabriela Nica
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioana Gabriela Nica.
Scientific Reports | 2016
Aurélie Carlier; Hilde Brems; Joanna Ashbourn; Ioana Gabriela Nica; Eric Legius; Liesbet Geris
Congenital pseudarthrosis of the tibia (CPT) is a rare disease which normally presents itself during early childhood by anterolateral bowing of the tibia and spontaneous tibial fractures. Although the exact etiology of CPT is highly debated, 40–80% of CPT patients are carriers of a mutation in the Neurofibromatosis Type 1 (NF1) gene, which can potentially result in an altered phenotype of the skeletal cells and impaired bone healing. In this study we use a computational model of bone regeneration to examine the effect of the Nf1 mutation on bone fracture healing by altering the parameter values of eight key factors which describe the aberrant cellular behaviour of Nf1 haploinsufficient and Nf1 bi-allelically inactivated cells. We show that the computational model is able to predict the formation of a hamartoma as well as a wide variety of CPT phenotypes through different combinations of altered parameter values. A sensitivity analysis by “Design of Experiments” identified the impaired endochondral ossification process and increased infiltration of fibroblastic cells as key contributors to the degree of severity of CPT. Hence, the computational model results have added credibility to the experimental hypothesis of a genetic cause (i.e. Nf1 mutation) for CPT.
The Journal of Neuroscience | 2016
Hemmings Wu; Tim Tambuyzer; Ioana Gabriela Nica; Marjolijn Deprez; Kris van Kuyck; Jean-Marie Aerts; Sabine Van Huffel; Bart Nuttin
The bed nucleus of the stria terminalis (BNST) is implicated in anxiety and reward processing, both of which are associated with obsessive-compulsive disorder (OCD). Specific neuronal groups in the BNST related to anxiety and reward have been identified, but quantitative data about the information carried by local field potential (LFP) signals in this area during obsession/compulsion are lacking. Here we investigate the BNST LFP in the schedule-induced polydipsia, an animal model of OCD. We implanted electrodes bilaterally in the BNST and random control brain regions in 32 male Wistar rats, and recorded corresponding LFP during compulsive and noncompulsive behavior. We first applied high-frequency (100 Hz) electrical stimulation through the implanted electrodes and analyzed its effects on compulsive behavior. We then performed time-frequency analysis of LFPs and statistically compared the normalized power of δ (1–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz), and lower γ (30–45 Hz) bands between different groups. Our data showed that the normalized δ, β, and γ powers in the right BNST were specifically correlated with compulsive behaviors. δ and γ oscillations increased and decreased during the initiation phase of compulsion, respectively, whereas β increased after compulsion stopped. Moreover, the effect of BNST electrical stimulation, in terms of suppression of compulsion, was significantly correlated with the percentage change of these bands during compulsion. Our research reveals potential biomarkers and underlying neurophysiological mechanisms of compulsion and warrants further assessment of the use of LFP for closed-loop neuromodulation in OCD. SIGNIFICANCE STATEMENT Although specific neuronal groups in the bed nucleus of the stria terminalis (BNST) related to anxiety and reward circuitries have been identified, psychopathological information carried by local field potentials in the BNST has not yet been described. We discovered that normalized powers of the right BNST δ, β, and γ oscillations were highly correlated with compulsion. Specifically, δ and γ oscillations increased and decreased during the initiation phase of compulsion, respectively, whereas β increased after compulsion stopped. Such correlations were not found in other parts of the brain during compulsion, or in the BNST during noncompulsive behavior. Current findings reveal real-time neurophysiological biomarkers of compulsion and warrant further assessment of the use of local field potentials for closed-loop neuromodulation for OCD.
Scientific Reports | 2018
Ahmad Khatoun; Jolien Breukers; Sara Op de Beeck; Ioana Gabriela Nica; Jean-Marie Aerts; Laura Seynaeve; Tom Haeck; Boateng Asamoah; Myles Mc Laughlin
Transcranial alternating current stimulation (tACS) is a noninvasive neuromodulation method that can entrain physiological tremor in healthy volunteers. We conducted two experiments to investigate the effectiveness of high-amplitude and focused tACS montages at entraining physiological tremor. Experiment 1 used saline-soaked sponge electrodes with an extra-cephalic return electrode and compared the effects of a motor (MC) and prefrontal cortex (PFC) electrode location. Average peak-amplitude was 1.925 mA. Experiment 2 used gel-filled cup-electrodes in a 4 × 1 focused montage and compared the effects of MC and occipital cortex (OC) tACS. Average peak-amplitude was 4.45 mA. Experiment 1 showed that unfocused MC and PFC tACS both produced phosphenes and significant phase entrainment. Experiment 2 showed that focused MC and OC tACS produced no phosphenes but only focused MC tACS caused significant phase entrainment. At the group level, tACS did not have a significant effect on tremor amplitude. However, with focused tACS there was a significant correlation between phase entrainment and tremor amplitude modulation: subjects with higher phase entrainment showed more tremor amplitude modulation. We conclude that: (1) focused montages allow for high-amplitude tACS without phosphenes and (2) high amplitude focused tACS can entrain physiological tremor.
Scientific Reports | 2018
Ahmad Khatoun; Jolien Breukers; Sara Op de Beeck; Ioana Gabriela Nica; Jean-Marie Aerts; Laura Seynaeve; Tom Haeck; Boateng Asamoah; Myles Mc Laughlin
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
Frontiers in Behavioral Neuroscience | 2018
Ioana Gabriela Nica; Marjolijn Deprez; Bart Nuttin; Jean-Marie Aerts
Background: Neural injury to the motor cortex may result in long-term impairments. As a model for human impairments, rodents are often used to study deficits related to reaching and grasping, using the single-pellet reach-to-grasp task. Current assessments of this test capture mostly endpoint outcome. While qualitative features have been proposed, they usually involve manual scoring. Objective: To detect three phases of movement during the single-pellet reach-to-grasp test and assess completion of each phase. To automatically monitor rat forelimb trajectory so as to extract kinematics and classify phase outcome. Methods: A top-view camera is used to monitor three rats during training, healthy and impaired testing, over 33 days. By monitoring the coordinates of the forelimb tip along with the position of the pellet, the algorithm divides a trial into reaching, grasping and retraction. Unfulfilling any of the phases results in one of three possible errors: miss, slip or drop. If all phases are complete, the outcome label is success. Along with endpoints, movement kinematics are assessed: variability, convex hull, mean and maximum reaching speed, length of trajectory and peak forelimb extension. Results: The set of behavior endpoints was extended to include miss, slip, drop and success rate. The labeling algorithm was tested on pre- and post-lesion datasets, with overall accuracy rates of 86% and 92%, respectively. These endpoint features capture a drop in skill after motor cortical lesion as the success rate of 59.6 ± 11.8% pre-lesion decreases to 13.9 ± 8.2% post-lesion, along with a significant increase in miss rate from 7.2 ± 6.7% pre-lesion to 50.2 ± 18.7% post-lesion. Kinematics reveals individual-specific strategies of improvement during training, with a common trend of trajectory variability decreasing with success. Correlations between kinematics and endpoints reveal a more complex pattern of relationships during rehabilitation (18 significant pairs of features) than during training (nine correlated pairs). Conclusion: Extended endpoint outcomes and kinematics of reaching and grasping are captured automatically with a robust computer program. Both endpoints and kinematics capture intra-animal drop in skill after a motor cortical lesion. Correlations between kinematics and endpoints change from training to rehabilitation, suggesting different mechanisms that underlie motor improvement.
international conference on bio-inspired systems and signal processing | 2015
Ioana Gabriela Nica; Marjolijn Deprez; Frederik Ceyssens; Kris van Kuyck; Robert Puers; Bart Nuttin; Jean-Marie Aerts
Oscillatory neural activity was reported to have various physiological roles in information processing of brain functions. It is now established that extracellular activity in the motor cortex encodes aspects of movement, involving planning and motor control. Oscillatory patterns have also been hypothesized to play a role in brain recovery and functional remapping. In this study, we measured neural activity from within the cavity wall of a motor cortex lesion, in a rat model, while the animals performed a skilled walking task. We aim at providing a possible framework of analysis, focused on revealing oscillatory patterns in the cavity wall and their correlation with motor deficits, by using a combination of spectral features, involving power spectra and coherence estimates in the beta and gamma frequency bands.
Archive | 2017
Kelly Luyck; Ioana Gabriela Nica; Alexander Bertrand; Bart Nuttin; Laura Luyten
Archive | 2016
Frederik Ceyssens; Marjolijn Deprez; Ioana Gabriela Nica; Kris van Kuyck; Jean-Marie Aerts; Bart Nuttin; Bob Puers
Proceedings of NEUROTECHNIX 2015 | 2015
Ioana Gabriela Nica; Marjolijn Deprez; Frederik Ceyssens; Kris van Kuyck; Bob Puers; Bart Nuttin; Jean-Marie Aerts
Archive | 2015
Aurélie Carlier; Hilde Brems; Joanna Ashbourn; Ioana Gabriela Nica; Eric Legius E; Hans Van Oosterwyck; Liesbet Geris