Ioanna-Katerina Aggeli
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioanna-Katerina Aggeli.
Cellular Signalling | 2008
Ioanna-Katerina Aggeli; Isidoros Beis; Catherine Gaitanaki
We investigated the response of alphaB-crystallin to oxidative stress and calpain inhibition in an attempt to elucidate the signalling pathways mediating its phosphorylation. Given the high expression levels of alphaB-crystallin in cardiac muscle one can evaluate the significance of its participation in preservation of homeostasis under adverse conditions. H9c2 cardiac myoblasts were used as our experimental model since their response reflects the signal transduction pathways activated by stress conditions in the myocardium. Thus, in H9c2 cells treated with H2O2 the mechanism regulating alphaB-crystallin phosphorylation was found to involve p38-MAPK/MSK1 as well as intracellular free calcium levels. Our immunocytochemical experiments demonstrated phosphorylated alphaB-crystallin to be co-localized with tubulin, potentially preserving cytoskeletal architecture under these interventions. In H9c2 cells treated with calpain inhibitors (ALLN, ALLM) alphaB-crystallin exhibited a p38-MAPK- and [Ca 2+](i)-dependent phosphorylation pattern since the latter was ablated in the presence of the selective p38-MAPK inhibitor SB203580 and calcium chelator BAPTA-AM. Calpain activity repression ultimately led to apoptosis confirmed by PARP fragmentation and chromatin condensation. However, the apoptotic pathway activated by ALLM and ALLN differed, underlying the diverse transduction mechanisms stimulated. In addition to this, an anti-apoptotic role for phospho-alphaB-crystallin was verified by confirmation of its interaction with pro-caspase 3, hindering its cleavage and subsequent activation. Collectively, our findings underline alphaB-crystallin crucial role as a participant of cardiac cells early response to stressful stimuli compromising their survival.
Molecular and Cellular Biochemistry | 2001
Ioanna-Katerina Aggeli; Catherine Gaitanaki; Antigone Lazou; Isidoros Beis
We investigated the expression and activation of three MAPK subfamilies in the isolated perfused amphibian heart. ERK was detected as a 43 kDa band; p38‐MAPK was detected as a band corresponding to 38 kDa and JNKs were detected as two bands corresponding to 46 and 52 kDa, respectively. PMA induced the activation of the ERK pathway as assessed by determining the phosphorylation state of ERK and the upstream component MEK1/2. PD98059 abolished this activation. p38‐MAPK was phosphorylated by sorbitol (almost 12‐fold, maximal within 10–15 min) and JNKs were phosphorylated and activated by sorbitol or anoxia/reoxygenation (approximately 4‐ and 2.5‐fold, respectively). SB203580 completely blocked the activation of p38‐MAPK by sorbitol. These results indicate that the MAPK pathways activated by phorbol esters, hyperosmotic stress or anoxia/reoxygenation in the amphibian heart may have an important role in this experimental system.
The Journal of Experimental Biology | 2008
Catherine Gaitanaki; Michalis Mastri; Ioanna-Katerina Aggeli; Isidoros Beis
SUMMARY In the present study the activation of p38 mitogen-activated protein kinase (p38-MAPK) and c-Jun N-terminal kinases (JNKs) by hyperthermia was investigated in the isolated perfused Rana ridibunda heart. Hyperthermia (42°C) was found to profoundly stimulate p38-MAPK phosphorylation within 0.5 h, with maximal values being attained at 1 h [4.503(±0.577)-fold relative to control, P<0.01]. JNKs were also activated under these conditions in a sustained manner for at least 4 h [2.641(±0.217)-fold relative to control, P<0.01]. Regarding their substrates, heat shock protein 27 (Hsp27) was maximally phosphorylated at 1 h [2.261(±0.327)-fold relative to control, P<0.01] and c-Jun at a later phase [3 h: 5.367(±0.081)-fold relative to control, P<0.001]. Hyperthermia-induced p38-MAPK activation was found to be dependent on the Na+/H+ exchanger 1 (NHE1) and was also suppressed by catalase (Cat) and superoxide dismutase (SOD), implicating the generation of reactive oxygen species (ROS). ROS were also implicated in the activation of JNKs by hyperthermia, with the Na+/K+-ATPase acting as a mediator of this effect at an early stage and the NHE1 getting involved at a later time point. Finally, JNKs were found to be the principal mediators of the apoptosis induced under hyperthermic conditions, as their inhibition abolished poly(ADP-ribose) polymerase (PARP) cleavage after 4 h at 42°C. Overall, to our knowledge, this study highlights for the first time the variable mediators implicated in the transduction of the hyperthermic signal in the isolated perfused heart of an ectotherm and deciphers a potential salutary effect of p38-MAPK as well as the fundamental role of JNKs in the induced apoptosis.
Basic Research in Cardiology | 2006
Efstathios K. Iliodromitis; Catherine Gaitanaki; Antigone Lazou; Ioanna-Katerina Aggeli; Vassilios Gizas; Elias Bofilis; Anastasia Zoga; Isidoros Beis; Dimitrios Th. Kremastinos
Previous studies have shown that the cardioprotective effect of ischemic preconditioning (IPC) can be mimicked pharmacologically with clinically relevant agents, including nitric oxide (NO) donors. However, whether pharmacological preconditioning shares the same molecular mechanism with IPC is not fully elucidated. The present study aimed to determine the activation of mitogen-activated protein kinases (MAPKs) (ERK1/2, p38 MAPK and p46/p54 JNKs) during ischemia and at reperfusion in nitroglycerin-induced preconditioning as compared to IPC and to correlate this with the conferred cardioprotection in anesthetized rabbits. Sixty minutes of intravenous administration of nitroglycerin was capable of inducing both early and late phase preconditioning in anesthetized rabbits, as it was expressed by the reduction of infarct size. Despite the cardioprotective effect conferred by both ischemic and nitroglycerin-induced preconditioning, there was a differential phosphorylation of MAPKs between the studied groups. p38 MAPK was activated early in ischemia in both ischemic and the early nitroglycerin-induced preconditioning while JNKs were markedly increased only after IPC. Furthermore, in these groups, ERK1/2 were activated during reperfusion. A different profile was observed in the late preconditioning induced by nitroglycerin with increased p38 MAPK and ERK1/2 phosphorylation during late ischemia. No activation of JNKs was observed at any time point in this group. It seems that activation of individual MAPK subfamilies depends on the nature of preconditioning stimulus.
The Journal of Experimental Biology | 2007
Catherine Gaitanaki; Theodora Kalpachidou; Ioanna-Katerina Aggeli; Panagiota Papazafiri; Isidoros Beis
SUMMARY Mitogen-activated protein kinases (MAPKs) constitute one of the most important intracellular signalling pathways. In particular, the p38-MAPK subfamily is known to be activated under various stressful conditions, such as mechanical or oxidative stress. Furthermore, cobalt chloride (CoCl2) has been shown to mimic hypoxic responses in various cell lines and cause overproduction of reactive oxygen species (ROS). In the current study, we investigated the effect of CoCl2 on p38-MAPK signalling pathway in the perfused Rana ridibunda heart. Immunoblot analysis of the phosphorylated, and thus activated, form of p38-MAPK revealed that maximum phosphorylation was attained at 500 μmol l-1 CoCl2. A similar profile was observed for MAPKAPK2 and Hsp27 phosphorylation (direct and indirect p38-MAPK substrates, respectively). Time course analysis of p38-MAPK phosphorylation pattern showed that the kinase reached its peak within 15 min of treatment with 500 μmol l-1 CoCl2. Similar results were obtained for Hsp27 phosphorylation. In the presence of the antioxidants Trolox or Lipoic acid, p38-MAPK CoCl2-induced phosphorylation was attenuated. Analogous results were obtained for Hsp27 and MAPKAPK2. In parallel, mRNA levels of the ANP gene, a hormone whose transcriptional regulation has previously been shown to be regulated by p38-MAPK, were examined (semi-quantitative ratiometric RT-PCR). CoCl2 treatment significantly increased ANP mRNA levels, whereas, in the presence of antioxidants, the transcript levels returned to basal values. All the above data indicate that CoCl2 stimulates compensatory mechanisms involving the p38-MAPK signalling cascade along with ANP.
Endocrinology | 2011
Ioanna-Katerina Aggeli; Dimitris Theofilatos; Isidoros Beis; Catherine Gaitanaki
Impaired insulin sensitivity (insulin resistance) is a common denominator in many metabolic disorders, exerting pleiotropic effects on skeletal muscle, liver, and adipose tissue function. Heme oxygenase-1 (HOX-1), the rate-limiting enzyme in heme catabolism, has recently been shown to confer an antidiabetic effect while regulating cellular redox-buffering capacity. Therefore, in the present study, we probed into the mechanisms underlying the effect of insulin on HOX-1 in C2 skeletal myoblasts. Hence, insulin was found to suppress C2 myoblasts viability via stimulation of oxidative stress, with HOX-1 counteracting this action. Insulin induced HOX-1 expression in a time- and dose-dependent manner, an effect attenuated by selective inhibitors of ERK1/2 (PD98059), Src (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d] pyrimidine), and c-Jun terminal kinases 1 and 2 (SP600125) pathways. Furthermore, nuclear factor-κB role in insulin-induced HOX-1 up-regulation was verified, with ERK1/2, Src, and c-Jun terminal kinases 1 and 2 mediating p65-nuclear factor-κB subunit phosphorylation. Overall, our novel findings highlight for the first time the transduction mechanisms mediating HOX-1 induction in insulin-treated C2 myoblasts. This effect was established to be cell type specific because insulin failed to promote HOX-1 expression in HepG2 hepatoma cells. Deciphering the signaling networks involved in insulin-stimulated HOX-1 up-regulation is of prominent significance because it may potentially contribute to elucidation of the mechanisms involved in associated metabolic pathologies.
Bioorganic & Medicinal Chemistry | 2015
Maria Peleli; Ioanna-Katerina Aggeli; Alexios N. Matralis; Angeliki P. Kourounakis; Isidoros Beis; Catherine Gaitanaki
Excessive levels of reactive oxygen species (ROS) result in numerous pathologies including muscle disorders. In essence, skeletal muscle performance of daily activities can be severely affected by the redox imbalances occurring after muscular injuries, surgery, atrophy due to immobilization, dystrophy or eccentric muscle contraction. Therefore, research on the potential beneficial impact of antioxidants is of outmost importance. In this context, aiming at further exploring the mechanisms of action of our newly synthesized antioxidant compounds (AK1 and AK2) in a skeletal muscle experimental setting, we initially investigated their scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and subsequently assessed their effect on the viability of C2 skeletal myoblasts in the presence of two pro-oxidants: H2O2 and curcumin (MTT assay). Interestingly, while both compounds reversed the detrimental effect of H2O2, only AK2 was cytoprotective in curcumin-treated C2 cells. We next confirmed the immediate activation of extracellular signal-regulated kinases (ERKs) and the more delayed activation profile of c-Jun NH2-terminal kinases (JNKs) in C2 skeletal myoblasts exposed to curcumin, by Western blotting. In correlation with the aforementioned results, only AK2 blocked the curcumin-induced activation of JNKs pathway. Furthermore, JNKs were revealed to mediate curcumin-induced apoptosis in C2 cells and only AK2 to effectively suppress it (by detecting its effect on poly(ADP-ribose) polymerase fragmentation). Overall, we have shown that two similar in structure novel antioxidants confer differential effects on C2 skeletal myoblasts viability under oxidative stress conditions. This result may be attributed to these antioxidants respective diverse mode of interaction with the signaling effectors involved in the observed responses. Future studies should further evaluate the mechanism of action of these compounds in order to support their potential application in therapeutic protocols against ROS-related muscle disorders.
Journal of Experimental Zoology | 2013
Ioanna-Katerina Aggeli; Evaggelos Koustas; Catherine Gaitanaki; Isidoros Beis
Amphibians are known to better tolerate and endure adverse environmental conditions such as redox imbalances conferred by reactive oxygen species (ROS), compared to mammals. Interestingly, the exact adaptation strategies and signaling mechanisms mediating these effects have not been fully elucidated. Therefore, in the present study, we probed into the molecular response of the isolated perfused Rana ridibunda heart to curcumin, in the context of mitogen-activated protein kinases (MAPKs) phosphorylation patterns and apoptotic markers occurrence. In particular, this polyphenol was found to exert a pro-oxidant effect in our model and to significantly upregulate p38-MAPK and JNKs phosphorylation (thus activation). The early apoptosis observed, substantiated by poly(ADP-ribose) polymerase (PARP) cleavage, was established to be JNKs- and ROS-mediated, while no involvement of p38-MAPK was detected. Subsequently, the pro-oxidative activity of curcumin was confirmed to mimic H(2) O(2). Furthermore, NADPH oxidase as well as Na(+) /K(+) -ATPase were found to mediate JNKs phosphorylation as well as PARP proteolytic cleavage. Curcumin exerts pleiotropic actions, both beneficial and detrimental and is currently the subject of intense scientific research. Being a low-molecular-weight antioxidant, it is intriguing to investigate curcumins role in redox homeostasis in the amphibian heart, under conditions that apparently favor its pro-oxidative properties. Comparative studies of its multifaceted role in different species may contribute to the clarification of the signaling mechanisms it triggers and the terminal physiological response it confers. Collectively, this is to our knowledge, the first time that the signal transduction pathways stimulated by curcumin have been assessed in a non-mammalian species.
Free Radical Research | 2010
Ioanna-Katerina Aggeli; Eirini Kefaloyianni; Isidoros Beis; Catherine Gaitanaki
Abstract The exact physiological role of oxidative stress as a primary cause for skeletal muscle pathological conditions involving muscle degeneration remains elusive. Therefore, the present study was performed so as to decipher the signalling pathways orchestrating the potential cytoprotective role of heme oxygenase 1 (HOX-1) as well as cyclooxygenase 2 (COX-2) in skeletal myoblasts exposed to H2O2. Cell treatment with H2O2 (0.5 mM) resulted in a time- and dose-dependent response of HOX-1 and COX-2 mRNA and protein levels, with ERK1/2, p38-MAPK and MSK1 found to mediate these effects. Furthermore, Src and JNKs blockade attenuated COX-2 response. Collectively, these novel findings highlight for the first time HOX-1 and COX-2 fundamental contribution to skeletal myoblast tolerance under oxidative stress, since their inhibition significantly attenuated viability of skeletal myoblasts. The data also delineate the various effectors regulating HOX-1 and COX-2 expression, probably alleviating muscle degeneration in related disorders.
Cellular Signalling | 2006
Ioanna-Katerina Aggeli; Catherine Gaitanaki; Isidoros Beis