Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ioanna Kyriakou is active.

Publication


Featured researches published by Ioanna Kyriakou.


Physica Medica | 2015

Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit

M.A. Bernal; M.-C. Bordage; Jeremy Michael Cooney Brown; Marie Davídková; E. Delage; Z. El Bitar; Shirin A. Enger; Z. Francis; Susanna Guatelli; V. Ivanchenko; M. Karamitros; Ioanna Kyriakou; Lydia Maigne; Sylvain Meylan; K. Murakami; S. Okada; Henri Payno; Y. Perrot; Ivan Petrović; Q.T. Pham; A. Ristic-Fira; T. Sasaki; Václav Štěpán; H.N. Tran; Carmen Villagrasa; S. Incerti

Understanding the fundamental mechanisms involved in the induction of biological damage by ionizing radiation remains a major challenge of todays radiobiology research. The Monte Carlo simulation of physical, physicochemical and chemical processes involved may provide a powerful tool for the simulation of early damage induction. The Geant4-DNA extension of the general purpose Monte Carlo Geant4 simulation toolkit aims to provide the scientific community with an open source access platform for the mechanistic simulation of such early damage. This paper presents the most recent review of the Geant4-DNA extension, as available to Geant4 users since June 2015 (release 10.2 Beta). In particular, the review includes the description of new physical models for the description of electron elastic and inelastic interactions in liquid water, as well as new examples dedicated to the simulation of physicochemical and chemical stages of water radiolysis. Several implementations of geometrical models of biological targets are presented as well, and the list of Geant4-DNA examples is described.


Physics in Medicine and Biology | 2009

A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water

Dimitris Emfietzoglou; Rafael Garcia-Molina; Ioanna Kyriakou; Isabel Abril; Hooshang Nikjoo

The electronic stopping power of liquid water for protons over the 50 keV to 10 MeV energy range is studied using an improved dielectric response model which is in good agreement with the best available experimental data. The mean excitation energy (I) of stopping power theory is calculated to be 77.8 eV. Shell corrections are accounted for in a self-consistent manner through analytic dispersion relations for the momentum dependence of the dielectric function. It is shown that widely used dispersion schemes based on the random-phase approximation (RPA) can result in sizeable errors due to the neglect of damping and local field effects that lead to a momentum broadening and shifting of the energy-loss function. Low-energy Born corrections for the Barkas, Bloch and charge-state effects practically cancel out down to 100 keV proton energies. Differences with ICRU Report 49 stopping power values and earlier calculations are found to be at the approximately 20% level in the region of the stopping maximum. The present work overcomes the limitations of the Bethe formula below 1 MeV and improves the accuracy of previous calculations through a more consistent account of the dielectric response properties of liquid water.


Radiation Research | 2011

Energy Loss of Hydrogen- and Helium-Ion Beams in DNA: Calculations Based on a Realistic Energy-Loss Function of the Target

Isabel Abril; Rafael Garcia-Molina; Cristian D. Denton; Ioanna Kyriakou; Dimitris Emfietzoglou

Abstract We have calculated the electronic energy loss of proton and α-particle beams in dry DNA using the dielectric formalism. The electronic response of DNA is described by the MELF-GOS model, in which the outer electron excitations of the target are accounted for by a linear combination of Mermin-type energy-loss functions that accurately matches the available experimental data for DNA obtained from optical measurements, whereas the inner-shell electron excitations are modeled by the generalized oscillator strengths of the constituent atoms. Using this procedure we have calculated the stopping power and the energy-loss straggling of DNA for hydrogen- and helium-ion beams at incident energies ranging from 10 keV/nucleon to 10 MeV/nucleon. The mean excitation energy of dry DNA is found to be I  =  81.5 eV. Our present results are compared with available calculations for liquid water showing noticeable differences between these important biological materials. We have also evaluated the electron excitation probability of DNA as a function of the transferred energy by the swift projectile as well as the average energy of the target electronic excitations as a function of the projectile energy. Our results show that projectiles with energy ≲100 keV/nucleon (i.e., around the stopping-power maximum) are more suitable for producing low-energy secondary electrons in DNA, which could be very effective for the biological damage of malignant cells.


International Journal of Radiation Biology | 2012

Inelastic scattering of low-energy electrons in liquid water computed from optical-data models of the Bethe surface

Dimitris Emfietzoglou; Ioanna Kyriakou; Isabel Abril; Rafael Garcia-Molina; Hooshang Nikjoo

Abstract Purpose: We provide a short overview of optical-data models for the description of inelastic scattering of low-energy electrons (10–10,000 eV) in liquid water. The effect on the inelastic scattering cross section due to different optical data and extension algorithms is examined with emphasis on some recent developments. Materials and methods: The optical-data method whereby experimental optical data and theoretical extension algorithms are used to describe the dependence of the dielectric response function on energy- and momentum-transfer and obtain the Bethe surface of the material, currently represents the most used method for computing the inelastic scattering of low-energy electrons in condensed media. Two sets of experimental optical data for liquid water obtained from reflectance and inelastic X-ray scattering spectroscopy, respectively, and the extension algorithms of Ritchie, Penn, and Ashley are examined. Recent developments are discussed along with the role of corrections to the random phase approximation (RPA) of electron gas theory. Results: The inelastic scattering cross section in the energy range 200–10,000 eV was found to be rather insensitive (to within 10%) to the choice of optical data or the extension algorithm. In contrast, differences between model calculations increase rapidly below 200 eV with the influence of the extension algorithm being dominant. Conclusion: The choice of the extension algorithm used to extrapolate optical data to finite momentum transfer and obtain the Bethe surface is crucial in modelling the inelastic scattering of electrons with energies below 200 eV. A new set of measurements on the dielectric response function of liquid water beyond the optical limit and the development of extension algorithms that will go beyond RPA by considering the effect of (short-range) electron exchange and correlation should be of some priority.


Medical Physics | 2015

Technical Note: Improvements in GEANT4 energy-loss model and the effect on low-energy electron transport in liquid water

Ioanna Kyriakou; S. Incerti; Z. Francis

PURPOSE The geant4-DNA physics models are upgraded by a more accurate set of electron cross sections for ionization and excitation in liquid water. The impact of the new developments on low-energy electron transport simulations by the geant4 Monte Carlo toolkit is examined for improving its performance in dosimetry applications at the subcellular and nanometer level. METHODS The authors provide an algorithm for an improved implementation of the Emfietzoglou model dielectric response function of liquid water used in the geant4-DNA existing model. The algorithm redistributes the imaginary part of the dielectric function to ensure a physically motivated behavior at the binding energies, while retaining all the advantages of the original formulation, e.g., the analytic properties and the fulfillment of the f-sum-rule. In addition, refinements in the exchange and perturbation corrections to the Born approximation used in the geant4-DNA existing model are also made. RESULTS The new ionization and excitation cross sections are significantly different from those of the geant4-DNA existing model. In particular, excitations are strongly enhanced relative to ionizations, resulting in higher W-values and less diffusive dose-point-kernels at sub-keV electron energies. CONCLUSIONS An improved energy-loss model for the excitation and ionization of liquid water by low-energy electrons has been implemented in geant4-DNA. The suspiciously low W-values and the unphysical long tail in the dose-point-kernel have been corrected owing to a different partitioning of the dielectric function.


Radiation Research | 2013

Inelastic Cross Sections for Low-Energy Electrons in Liquid Water: Exchange and Correlation Effects

Dimitris Emfietzoglou; Ioanna Kyriakou; Rafael Garcia-Molina; Isabel Abril; Hooshang Nikjoo

Low-energy electrons play a prominent role in radiation therapy and biology as they are the largest contributor to the absorbed dose. However, no tractable theory exists to describe the interaction of low-energy electrons with condensed media. This article presents a new approach to include exchange and correlation (XC) effects in inelastic electron scattering at low energies (below ∼10 keV) in the context of the dielectric theory. Specifically, an optical-data model of the dielectric response function of liquid water is developed that goes beyond the random phase approximation (RPA) by accounting for XC effects using the concept of the many-body local-field correction (LFC). It is shown that the experimental energy-loss-function of liquid water can be reproduced by including into the RPA dispersion relations XC effects (up to second order) calculated in the time-dependent local-density approximation with the addition of phonon-induced broadening in N. D. Mermins relaxation-time approximation. Additional XC effects related to the incident and/or struck electrons are included by means of the vertex correction calculated by a modified Hubbard formula for the exchange-only LFC. Within the first Born approximation, the present XC corrections cause a significantly larger reduction (∼10–50%) to the inelastic cross section compared to the commonly used Mott and Ochkur approximations, while also yielding much better agreement with the recent experimental data for amorphous ice. The current work offers a manageable, yet rigorous, approach for including non-Born effects in the calculation of inelastic cross sections for low-energy electrons in liquid water, which due to its generality, can be easily extended to other condensed media.


Journal of Applied Physics | 2016

The impact of new Geant4-DNA cross section models on electron track structure simulations in liquid water

Ioanna Kyriakou; Martin Šefl; V. Nourry; S. Incerti

The most recent release of the open source and general purpose Geant4 Monte Carlo simulation toolkit (Geant4 10.2 release) contains a new set of physics models in the Geant4-DNA extension for improving the modelling of low-energy electron transport in liquidwater (<10 keV). This includes updated electron cross sections for excitation, ionization, and elastic scattering. In the present work, the impact of these developments to track-structure calculations is examined for providing the first comprehensive comparison against the default physics models of Geant4-DNA. Significant differences with the default models are found for the average path length and penetration distance, as well as for dose-point-kernels for electron energies below a few hundred eV. On the other hand, self-irradiation absorbed fractions for tissue-like volumes and low-energy electron sources (including some Auger emitters) reveal rather small differences (up to 15%) between these new and default Geant4-DNA models. The above findings indicate that the impact of the new developments will mainly affect those applications where the spatial pattern of interactions and energy deposition of very-low energy electrons play an important role such as, for example, the modelling of the chemical and biophysical stage of radiation damage to cells.


Physics in Medicine and Biology | 2011

A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

Rafael Garcia-Molina; Isabel Abril; Santiago Heredia-Avalos; Ioanna Kyriakou; Dimitris Emfietzoglou

We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth-dose distribution.


Journal of Applied Physics | 2011

Simple model of bulk and surface excitation effects to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes

Ioanna Kyriakou; Dimitris Emfietzoglou; Rafael Garcia-Molina; Isabel Abril; Kostas Kostarelos

The effect of bulk and surface excitations to inelastic scattering in low-energy electron beam irradiation of multi-walled carbon nanotubes (MWNTs) is studied using the dielectric formalism. Calculations are based on a semiempirical dielectric response function for MWCNTs determined by means of a many-pole plasmon model with parameters adjusted to available experimental spectroscopic data under theoretical sum-rule constrains. Finite-size effects are considered in the context of electron gas theory via a boundary correction term in the plasmon dispersion relations, thus, allowing a more realistic extrapolation of the electronic excitation spectrum over the whole energy-momentum plane. Energy-loss differential and total inelastic scattering cross sections as a function of electron energy and distance from the surface, valid over the energy range ∼50–30,000 eV, are calculated with the individual contribution of bulk and surface excitations separated and analyzed for the case of normally incident and escapin...


Journal of Applied Physics | 2013

The effect of static many-body local-field corrections to inelastic electron scattering in condensed media

Dimitris Emfietzoglou; Ioanna Kyriakou; Rafael Garcia-Molina; Isabel Abril

We present a manageable approach to include, within the context of optical-data models of the dielectric response function, exchange and correlation (XC) effects in inelastic electron scattering, thus, going beyond the standard random-phase approximation (RPA). The many-body local-field correction in its static limit, G(q), is employed to incorporate XC effects to all orders in q at both the level of “screening” and the level of “scattering” by computing the so-called test-charge–test-charge (t–t), electron–test-charge (e–t), and electron–electron (e–e) dielectric functions. Some of the most used analytic approximations for G(q) are examined, ranging from the early Hubbard-like expressions to more recent parameterized formulations that satisfy some of the known asymptotic limits. The effect of the different G(q) models upon the inelastic scattering of low-medium energy electrons in condensed matter is examined using solid (amorphous) carbon as an example. It is shown that when XC corrections at all levels...

Collaboration


Dive into the Ioanna Kyriakou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Incerti

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge