Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ioannis Fotidis is active.

Publication


Featured researches published by Ioannis Fotidis.


Bioresource Technology | 2013

Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion.

Ioannis Fotidis; Dimitar Borisov Karakashev; Irini Angelidaki

Ammonia is the major inhibitor of anaerobic digestion (AD) process in biogas plants. In the current study, the bioaugmentation of the ammonia tolerant SAO co-culture (i.e. Clostridium ultunense spp. nov. in association with Methanoculleus spp. strain MAB1) in a mesophilic up-flow anaerobic sludge blanket (UASB) reactor subjected to high ammonia loads was tested. The co-cultivation in fed-batch reactors of a fast-growing hydrogenotrophic methanogen (i.e. Methanoculleus bourgensis MS2(T)) with the SAO co-culture was also investigated. Results demonstrated that bioaugmentation of SAO co-culture in a UASB reactor was not possible most likely due to the slow maximum growth rate (μmax=0.007 h(-1)) of the culture caused by the methanogenic partner. The addition of M. bourgensis to SAO led to 42% higher growth rate (μmax=0.01 h(-1)) in fed-batch reactors. This indicates that methanogens were the slowest partners of the SAO co-culture and therefore were the limiting factor during bioaugmentation in the UASB reactor.


FEMS Microbiology Ecology | 2015

Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

Han Wang; Ioannis Fotidis; Irini Angelidaki

Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent.


Biotechnology for Biofuels | 2016

Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis

Gang Luo; Ioannis Fotidis; Irini Angelidaki

AbstractBackground Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure.ResultsThe results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors.ConclusionsThe discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.


Bioresource Technology | 2017

Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process.

Ahmed Mahdy; Ioannis Fotidis; Enrico Mancini; Mercedes Ballesteros; Cristina González-Fernández; Irini Angelidaki

This study investigated the ability of an ammonia-acclimatized inoculum to digest efficiently protein-rich microalgae for continuous 3rd generation biogas production. Moreover, we investigated whether increased C/N ratio could alleviate ammonia toxicity. The biochemical methane potential (BMP) of five different algae (Chlorella vulgaris)/manure (cattle) mixtures showed that the mixture of 80/20 (on VS basis) resulted in the highest BMP value (431mLCH4 gVS-1), while the BMP of microalgae alone (100/0) was 415mLCH4 gVS-1. Subsequently, anaerobic digestion of those two substrates was tested in continuous stirred tank reactors (CSTR). Despite of the high ammonium levels (3.7-4.2g NH4+-NL-1), CSTR reactors using ammonia tolerant inoculum resulted in relatively high methane yields (i.e. 77.5% and 84% of the maximum expected, respectively). These results demonstrated that ammonia tolerant inocula could be a promising approach to successfully digest protein-rich microalgae and achieve a 3rd generation biogas production.


Environmental Technology | 2014

Inoculum and zeolite synergistic effect on anaerobic digestion of poultry manure

Ioannis Fotidis; Panagiotis Kougias; Ioannis D. Zaganas; Thomas A. Kotsopoulos; Gerasimos Martzopoulos

Poultry manure is an ammonia-rich substrate due to its high content of proteins and amino acids. Ammonia is the major inhibitor of anaerobic digestion (AD) process, affecting biogas production and causing great economic losses to the biogas plants. In this study, the effect of different natural zeolite dosages on the mesophilic AD of poultry manure inoculated with a non-acclimatized to ammonia inoculum (dairy manure) was investigated. Additionally, a comparative analysis was performed between the data extracted from this study and the results of a previous study, which has been conducted under the same experimental conditions but with the use of ammonia acclimatized inoculum (swine manure). At 5 and 10 g zeolite L−1, the methane yield of poultry manure was 43.4% and 80.3% higher compared with the experimental set without zeolite addition. However, the ammonia non-acclimatized inoculum was not efficient in digesting poultry manure even in the presence of 10 g zeolite L−1, due to low methane production (only 39%) compared with the maximum theoretical yield. Finally, ammonia acclimatized inoculum and zeolite have demonstrated a possible ‘synergistic effect’, which led to a more efficient AD of poultry manure. The results of this study could potentially been used by the biogas plant operators to efficiently digest poultry manure.


Journal of Hazardous Materials | 2015

Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities.

Evangelos C. Symsaris; Ioannis Fotidis; Athanasios S. Stasinakis; Irini Angelidaki

In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion (AD) process. Additionally, the influence of DCF, TCS, and NP on the relative abundance of the methanogenic populations was investigated. Results obtained demonstrated that, in terms of methane production, SI inoculum was more resistant to the toxicity effect of DCF, TCS, and NP, compared to the MI inoculum. The IC50 values were 546, 35, and 363 mg L(-1) for SI inoculum and 481, 32, and 74 mg L(-1) for MI inoculum for DCF, TCS, and NP, respectively. For both inocula, higher biomass concentrations reduced the toxic effect of TCS (higher methane production up to 64%), contrary to DCF, where higher biomass loads decreased methane yield up to 31%. Fluorescence in situ hybridization analysis showed that hydrogenotrophic methanogens were more resistant to the inhibitory effect of DCF, TCS, and NP compared to aceticlastic methanogens.


International Agrophysics | 2013

Zeolite and swine inoculum effect on poultry manure biomethanation.

Panagiotis Kougias; Ioannis Fotidis; I.D. Zaganas; Thomas A. Kotsopoulos; Gerasimos Martzopoulos

Abstract Poultry manure is an ammonia-rich substrate that inhibits methanogenesis, causing severe problems to the anaerobic digestion process. In this study, the effect of different natural zeolite concentrations on the mesophilic anaerobic digestion of poultry waste inoculated with well-digested swine manure was investigated. A significant increase in methane production was observed in treatments where zeolite was added, compared to the treatment without zeolite.Methane production in the treatment with 10 g dm-3 of natural zeolite was found to be 109.75% higher compared to the treatment without zeolite addition. The results appear to be influenced by the addition of zeolite, which reduces ammonia toxicity in anaerobic digestion and by the ammonia-tolerant swine inoculum.


Bioresource Technology | 2018

Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

Hailin Tian; Ioannis Fotidis; Enrico Mancini; Laura Treu; Ahmed Mahdy; Mercedes Ballesteros; Cristina González-Fernández; Irini Angelidaki

Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10g NH4+-N L-1, was performed in mesophilic (37±1°C) continuously stirred tank reactors. The reactors were co-digesting (20/80 based on volatile solid) cattle slurry and microalgae, a protein-rich, 3rd generation biomass. Throughout the acclimation period, methane production was stable with more than 95% of the uninhibited yield. Next generation 16S rRNA gene sequencing revealed a dramatic microbiome change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7g NH4+-N L-1). Overall, this study demonstrated for the first time that acclimation of methanogenic communities to extreme ammonia levels in continuous AD process is possible, by developing a specialised acclimation AD microbiome.


Bioresource Technology | 2017

Different cultivation methods to acclimatise ammonia-tolerant methanogenic consortia

Hailin Tian; Ioannis Fotidis; Enrico Mancini; Irini Angelidaki

Bioaugmentation with ammonia tolerant-methanogenic consortia was proposed as a solution to overcome ammonia inhibition during anaerobic digestion process recently. However, appropriate technology to generate ammonia tolerant methanogenic consortia is still lacking. In this study, three basic reactors (i.e. batch, fed-batch and continuous stirred-tank reactors (CSTR)) operated at mesophilic (37°C) and thermophilic (55°C) conditions were assessed, based on methane production efficiency, incubation time, TAN/FAN (total ammonium nitrogen/free ammonia nitrogen) levels and maximum methanogenic activity. Overall, fed-batch cultivation was clearly the most efficient method compared to batch and CSTR. Specifically, by saving incubation time up to 150%, fed-batch reactors were acclimatised to nearly 2-fold higher FAN levels with a 37%-153% methanogenic activity improvement, compared to batch method. Meanwhile, CSTR reactors were inhibited at lower ammonia levels. Finally, specific methanogenic activity test showed that hydrogenotrophic methanogens were more active than aceticlastic methanogens in all FAN levels above 540mgNH3-NL-1.


Bioresource Technology | 2017

A systematic methodology to extend the applicability of a bioconversion model for the simulation of various co-digestion scenarios

Adam Kovalovszki; Merlin Alvarado-Morales; Ioannis Fotidis; Irini Angelidaki

Detailed simulation of anaerobic digestion (AD) requires complex mathematical models and the optimization of numerous model parameters. By performing a systematic methodology and identifying parameters with the highest impact on process variables in a well-established AD model, its applicability was extended to various co-digestion scenarios. More specifically, the application of the step-by-step methodology led to the estimation of a general and reduced set of parameters, for the simulation of scenarios where either manure or wastewater were co-digested with different organic substrates. Validation of the general parameter set involved the simulation of laboratory-scale data from three continuous co-digestion experiments, treating mixtures of different organic residues either at thermophilic or mesophilic conditions. Evaluation of the results showed that simulations using the general parameter set fitted experimental data quite well, indicating that it offers a reliable reference point for future simulations of anaerobic co-digestion scenarios.

Collaboration


Dive into the Ioannis Fotidis's collaboration.

Top Co-Authors

Avatar

Irini Angelidaki

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Hailin Tian

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Mancini

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Han Wang

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Laura Treu

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Kotsopoulos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerasimos Martzopoulos

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge