Ioannis Gkioulekas
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioannis Gkioulekas.
international conference on computer graphics and interactive techniques | 2013
Ioannis Gkioulekas; Shuang Zhao; Kavita Bala; Todd E. Zickler; Anat Levin
Translucent materials are ubiquitous, and simulating their appearance requires accurate physical parameters. However, physically-accurate parameters for scattering materials are difficult to acquire. We introduce an optimization framework for measuring bulk scattering properties of homogeneous materials (phase function, scattering coefficient, and absorption coefficient) that is more accurate, and more applicable to a broad range of materials. The optimization combines stochastic gradient descent with Monte Carlo rendering and a material dictionary to invert the radiative transfer equation. It offers several advantages: (1) it does not require isolating single-scattering events; (2) it allows measuring solids and liquids that are hard to dilute; (3) it returns parameters in physically-meaningful units; and (4) it does not restrict the shape of the phase function using Henyey-Greenstein or any other low-parameter model. We evaluate our approach by creating an acquisition setup that collects images of a material slab under narrow-beam RGB illumination. We validate results by measuring prescribed nano-dispersions and showing that recovered parameters match those predicted by Lorenz-Mie theory. We also provide a table of RGB scattering parameters for some common liquids and solids, which are validated by simulating color images in novel geometric configurations that match the corresponding photographs with less than 5% error.
ACM Transactions on Graphics | 2013
Ioannis Gkioulekas; Bei Xiao; Shuang Zhao; Edward H. Adelson; Todd E. Zickler; Kavita Bala
Multiple scattering contributes critically to the characteristic translucent appearance of food, liquids, skin, and crystals; but little is known about how it is perceived by human observers. This article explores the perception of translucency by studying the image effects of variations in one factor of multiple scattering: the phase function. We consider an expanded space of phase functions created by linear combinations of Henyey-Greenstein and von Mises-Fisher lobes, and we study this physical parameter space using computational data analysis and psychophysics. Our study identifies a two-dimensional embedding of the physical scattering parameters in a perceptually meaningful appearance space. Through our analysis of this space, we find uniform parameterizations of its two axes by analytical expressions of moments of the phase function, and provide an intuitive characterization of the visual effects that can be achieved at different parts of it. We show that our expansion of the space of phase functions enlarges the range of achievable translucent appearance compared to traditional single-parameter phase function models. Our findings highlight the important role phase function can have in controlling translucent appearance, and provide tools for manipulating its effect in material design applications.
Journal of Vision | 2014
Bei Xiao; Bruce Walter; Ioannis Gkioulekas; Todd E. Zickler; Edward H. Adelson; Kavita Bala
Translucency is an important aspect of material appearance. To some extent, humans are able to estimate translucency in a consistent way across different shapes and lighting conditions, i.e., to exhibit translucency constancy. However, Fleming and Bülthoff (2005) have shown that that there can be large failures of constancy, with lighting direction playing an important role. In this paper, we explore the interaction of shape, illumination, and degree of translucency constancy more deeply by including in our analysis the variations in translucent appearance that are induced by the shape of the scattering phase function. This is an aspect of translucency that has been largely neglected. We used appearance matching to measure how perceived translucency depends on both lighting and phase function. The stimuli were rendered scenes that contained a figurine and the lighting direction was represented by spherical harmonic basis function. Observers adjusted the density of a figurine under one lighting condition to match the material property of a target figurine under another lighting condition. Across the trials, we varied both the lighting direction and the phase function of the target. The phase functions were sampled from a 2D space proposed by Gkioulekas et al. (2013) to span an important range of translucent appearance. We find the degree of translucency constancy depends strongly on the phase functions location in the same 2D space, suggesting that the space captures useful information about different types of translucency. We also find that the geometry of an object is important. We compare the case of a torus, which has a simple smooth shape, with that of the figurine, which has more complex geometric features. The complex shape shows a greater range of apparent translucencies and a higher degree of constancy failure. In summary, humans show significant failures of translucency constancy across changes in lighting direction, but the effect depends both on the shape complexity and the translucency phase function.
international conference on computer graphics and interactive techniques | 2015
Ioannis Gkioulekas; Anat Levin; Todd E. Zickler
We present a computational imaging system, inspired by the optical coherence tomography (OCT) framework, that uses interferometry to produce decompositions of light transport in small scenes or volumes. The system decomposes transport according to various attributes of the paths that photons travel through the scene, including where on the source the paths originate, their pathlengths from source to camera through the scene, their wavelength, and their polarization. Since it uses interference, the system can achieve high pathlength resolutions, with the ability to distinguish paths whose lengths differ by as little as ten microns. We describe how to construct and optimize an optical assembly for this technique, and we build a prototype to measure and visualize three-dimensional shape, direct and indirect reflection components, and properties of scattering, refractive/dispersive, and birefringent materials.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2013
Sanjeev J. Koppal; Ioannis Gkioulekas; Travis Young; Hyunsung Park; Kenneth B. Crozier; Geoffrey Louis Barrows; Todd E. Zickler
Achieving computer vision on microscale devices is a challenge. On these platforms, the power and mass constraints are severe enough for even the most common computations (matrix manipulations, convolution, etc.) to be difficult. This paper proposes and analyzes a class of miniature vision sensors that can help overcome these constraints. These sensors reduce power requirements through template-based optical convolution, and they enable a wide field-of-view within a small form through a refractive optical design. We describe the tradeoffs between the field-of-view, volume, and mass of these sensors and we provide analytic tools to navigate the design space. We demonstrate milliscale prototypes for computer vision tasks such as locating edges, tracking targets, and detecting faces. Finally, we utilize photolithographic fabrication tools to further miniaturize the optical designs and demonstrate fiducial detection onboard a small autonomous air vehicle.
computer vision and pattern recognition | 2011
Sanjeev J. Koppal; Ioannis Gkioulekas; Todd E. Zickler; Geoffrey Louis Barrows
Achieving computer vision on micro-scale devices is a challenge. On these platforms, the power and mass constraints are severe enough for even the most common computations (matrix manipulations, convolution, etc.) to be difficult. This paper proposes and analyzes a class of miniature vision sensors that can help overcome these constraints. These sensors reduce power requirements through template-based optical convolution, and they enable a wide field-of-view within a small form through a novel optical design. We describe the trade-offs between the field of view, volume, and mass of these sensors and we provide analytic tools to navigate the design space. We also demonstrate milli-scale prototypes for computer vision tasks such as locating edges, tracking targets, and detecting faces.
international conference on image processing | 2010
Ioannis Gkioulekas; Georgios Evangelopoulos; Petros Maragos
We propose an alternative interpretation of Bayesian surprise in the spatial domain, to account for saliency arising from contrast in image context. Our saliency formulation is integrated in three different application scenaria, with considerable improvements in performance: 1) visual attention prediction, validated using eye- and mouse-tracking data, 2) region of interest detection, to improve scale selection and localization, 3) image quality assessment to achieve better agreement with subjective human evaluations.
european conference on computer vision | 2016
Ioannis Gkioulekas; Anat Levin; Todd E. Zickler
Inferring internal scattering parameters for general, heterogeneous materials, remains a challenging inverse problem. Its difficulty arises from the complex way in which scattering materials interact with light, as well as the very high dimensionality of the material space implied by heterogeneity. The recent emergence of diverse computational imaging techniques, together with the widespread availability of computing power, present a renewed opportunity for tackling this problem. We take first steps in this direction, by deriving theoretical results, developing an algorithmic framework, and performing quantitative evaluations for the problem of heterogeneous inverse scattering from simulated measurements of different computational imaging configurations.
computer vision and pattern recognition | 2015
Ioannis Gkioulekas; Bruce Walter; Edward H. Adelson; Kavita Bala; Todd E. Zickler
Edges in images of translucent objects are very different from edges in images of opaque objects. The physical causes for these differences are hard to characterize analytically and are not well understood. This paper considers one class of translucency edges-those caused by a discontinuity in surface orientation-and describes the physical causes of their appearance. We simulate thousands of translucency edge profiles using many different scattering material parameters, and we explain the resulting variety of edge patterns by qualitatively analyzing light transport. We also discuss the existence of shape and material metamers, or combinations of distinct shape or material parameters that generate the same edge profile. This knowledge is relevant to visual inference tasks that involve translucent objects, such as shape or material estimation.
neural information processing systems | 2011
Ioannis Gkioulekas; Todd E. Zickler