Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ioannis Lilis is active.

Publication


Featured researches published by Ioannis Lilis.


Osteoarthritis and Cartilage | 2013

Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet

Irene-Eva Triantaphyllidou; Elena Kalyvioti; Eleni A. Karavia; Ioannis Lilis; Kyriakos E. Kypreos; Dionysios J. Papachristou

OBJECTIVE Recent data suggest that obesity and related metabolic aberrations are associated with osteoarthritis (OA) development, a phenomenon that is attributed at least in part to the consumption of lipid-rich diets. To date, the molecular mechanisms that govern the lipid-OA connection remain largely unknown. Given the important role of high-density lipoprotein (HDL) in plasma and tissue lipid metabolism, the main purpose of the present study was to investigate the role of HDL metabolism in the pathobiology of OA. METHODS We used apolipoprotein A-I (apoA-I)(-/-) mice that lack classical apoA-I containing HDL, LCAT(-/-) mice that have only immature HDL and relatively reduced HDL-cholesterol levels and control C57BL/6 mice. Mice were placed on chow or western-type (WTD) and monitored for 24 weeks. Knee joints were removed and articular cartilage was isolated for further analyses. RESULTS The LCAT(-/-) mice were significantly more sensitive to the development of diet-induced obesity compared to the C57BL/6 and apoA-I(-/-) mice. Morphological, biochemical and molecular analyses revealed that the LCAT(-/-) obese mice developed OA, while the C57BL/6 mice that were fed WTD did not. Notably, apoA-I(-/-) mice that received WTD also developed OA although their body-weight gain was similar to their wild-type counterparts. Interestingly, bone marrow from LCAT(-/-) and apoA-I(-/-) mice contained significantly increased number of adipocytes, compared to the other groups. CONCLUSIONS Our findings suggest that perturbations in HDL metabolism predispose to OA following chronic insult with WTD and raise the challenging possibility that HDL has a causative relation to OA in patients with metabolic syndrome.


Journal of Clinical Investigation | 2015

Mast cells mediate malignant pleural effusion formation

Anastasios D. Giannou; Antonia Marazioti; Magda Spella; Nikolaos Kanellakis; Hara Apostolopoulou; Ioannis Psallidas; Zeljko M. Prijovich; Malamati Vreka; Dimitra Zazara; Ioannis Lilis; Vassilios Papaleonidopoulos; Chrysoula A. Kairi; Alexandra L. Patmanidi; Ioanna Giopanou; Nikolitsa Spiropoulou; Vaggelis Harokopos; Vassilis Aidinis; Dionisios Spyratos; Stamatia Teliousi; Helen Papadaki; Stavros Taraviras; Linda A. Snyder; Oliver Eickelberg; Dimitrios Kardamakis; Yoichiro Iwakura; Thorsten B. Feyerabend; Hans Reimer Rodewald; Ioannis Kalomenidis; Timothy S. Blackwell; Theodora Agalioti

Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell-induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable.


Journal of Cardiovascular Pharmacology | 2013

NGF Promotes Hemodynamic Recovery in a Rabbit Hindlimb Ischemic Model Through trkA- and VEGFR2-dependent Pathways

Andreas Karatzas; Konstantinos Katsanos; Ioannis Lilis; Helen A. Papadaki; Panagiotis Kitrou; Shimon Lecht; Cezary Marcinkiewicz; Dimitris Siablis; Peter I. Lelkes; Philip Lazarovici; Nikos E. Tsopanoglou

Abstract: Nerve growth factor (NGF) has been reported to play an important role in physiological and pathological angiogenesis. Based on these observations, we hypothesized that NGF may induce the formation of functional blood vessels in a hindlimb ischemic rabbit model. Hindlimb ischemia was induced in 34 rabbits bilaterally by endovascular embolization of femoral arteries. On the 7th, 14th, and 20th postembolization days, NGF was injected intramuscularly, in 1 ischemic limb, and vehicle was injected in the contralateral control limb. On the 40th day, newly developed collateral vessels (diameter >500 &mgr;m) were quantified by transauricular intraarterial subtraction angiography. Perfusion analysis of an in vivo dynamic computed tomography study was performed to the limbs to investigate the hemodynamic recovery of the distal ischemic tissues. Functional estimation of limb perfusion showed a statistically significant increase of blood flow and blood volume for NGF. However, the increase of the collateral vessels was not detectable angiographically, providing evidence for the existence of a NGF-stimulated capillary angiogenic network but not increase of arteriogenesis. The combination of NGF with either tropomyosin-related kinase type A or vascular endothelial growth factor receptor 2 antagonists abolished the NGF-induced hemodynamic recovery. These findings provide new insights into understanding the involvement of NGF in vascular formation and its applications in therapeutic angiogenesis.


PLOS ONE | 2015

Comprehensive Evaluation of Nuclear Factor-κΒ Expression Patterns in Non-Small Cell Lung Cancer.

Ioanna Giopanou; Ioannis Lilis; Vassilios Papaleonidopoulos; Antonia Marazioti; Magda Spella; Malamati Vreka; Helen Papadaki; Georgios T. Stathopoulos

Nuclear factor (NF)-κB signalling is required for lung adenocarcinoma development in mice, and both of its subunits RelA and RelB were independently reported to be highly expressed in human non-small cell lung cancer (NSCLC). To comprehensively examine NF-κB expression in NSCLC, we analyzed serial sections of primary tumor samples from 77 well-documented patients (36 adenocarcinomas, 40 squamous cell carcinomas and 3 large cell carcinomas) for immunoreactivity of RelA, RelB, P50, and P52/P100. Tumor and intratumoral stroma areas were discriminated based on proliferating cell nuclear antigen immunoreactivity and inflammatory infiltration was assessed in intratumoral stroma areas. NF-κB immunoreactivity was quantified by intensity, extent, and nuclear localization and was cross-examined with tumor cell proliferation, inflammatory infiltration, and clinical-pathologic data. We found that the expression of the different NF-κB subunits was not concordant, warranting our integral approach. Overall, RelA, RelB, and P50 were expressed at higher levels compared with P52/P100. However, RelA and P50 were predominantly expressed in intratumoral stroma, but RelB in tumor cells. Importantly, tumor area RelA expression was correlated with the intensity of inflammatory infiltration, whereas RelB expression was identified in proliferating tumor cells. Using multiple logistic regression, we identified that tumor RelB expression was an independent predictor of lymph node metastasis, and tumor P50 was an independent predictor of TNM6 stage IIB or higher, whereas tumor RelA was an independent predictor of inflammatory infiltration. We conclude that pathologic studies of NF-κB expression in cancer should include multiple pathway components. Utilizing such an approach, we identified intriguing associations between distinct NF-κB subunits and clinical and pathologic features of NSCLC.


Nature Communications | 2017

Mutant KRAS promotes malignant pleural effusion formation

Theodora Agalioti; Anastasios D. Giannou; Anthi Krontira; Nikolaos Kanellakis; Danai Kati; Malamati Vreka; Mario Pepe; Magda Spella; Ioannis Lilis; Dimitra Zazara; Eirini Nikolouli; Nikolitsa Spiropoulou; Andreas Papadakis; Konstantina Papadia; Apostolos Voulgaridis; Vaggelis Harokopos; Panagiota Stamou; Silke Meiners; Oliver Eickelberg; Linda A. Snyder; Sophia G. Antimisiaris; Dimitrios Kardamakis; Ioannis Psallidas; Antonia Marazioti; Georgios T. Stathopoulos

Malignant pleural effusion (MPE) is the lethal consequence of various human cancers metastatic to the pleural cavity. However, the mechanisms responsible for the development of MPE are still obscure. Here we show that mutant KRAS is important for MPE induction in mice. Pleural disseminated, mutant KRAS bearing tumour cells upregulate and systemically release chemokine ligand 2 (CCL2) into the bloodstream to mobilize myeloid cells from the host bone marrow to the pleural space via the spleen. These cells promote MPE formation, as indicated by splenectomy and splenocyte restoration experiments. In addition, KRAS mutations are frequently detected in human MPE and cell lines isolated thereof, but are often lost during automated analyses, as indicated by manual versus automated examination of Sanger sequencing traces. Finally, the novel KRAS inhibitor deltarasin and a monoclonal antibody directed against CCL2 are equally effective against an experimental mouse model of MPE, a result that holds promise for future efficient therapies against the human condition.


Embo Molecular Medicine | 2017

NRAS destines tumor cells to the lungs

Anastasios D. Giannou; Antonia Marazioti; Nikolaos Kanellakis; Ioanna Giopanou; Ioannis Lilis; Dimitra Zazara; Giannoula Ntaliarda; Danai Kati; Vasileios Armenis; Georgia Giotopoulou; Anthi Krontira; Marina Lianou; Theodora Agalioti; Malamati Vreka; Maria Papageorgopoulou; Sotirios Fouzas; Dimitrios Kardamakis; Ioannis Psallidas; Magda Spella; Georgios T. Stathopoulos

The lungs are frequently affected by cancer metastasis. Although NRAS mutations have been associated with metastatic potential, their exact role in lung homing is incompletely understood. We cross‐examined the genotype of various tumor cells with their ability for automatic pulmonary dissemination, modulated NRAS expression using RNA interference and NRAS overexpression, identified NRAS signaling partners by microarray, and validated them using Cxcr1‐ and Cxcr2‐deficient mice. Mouse models of spontaneous lung metastasis revealed that mutant or overexpressed NRAS promotes lung colonization by regulating interleukin‐8‐related chemokine expression, thereby initiating interactions between tumor cells, the pulmonary vasculature, and myeloid cells. Our results support a model where NRAS‐mutant, chemokine‐expressing circulating tumor cells target the CXCR1‐expressing lung vasculature and recruit CXCR2‐expressing myeloid cells to initiate metastasis. We further describe a clinically relevant approach to prevent NRAS‐driven pulmonary metastasis by inhibiting chemokine signaling. In conclusion, NRAS promotes the colonization of the lungs by various tumor types in mouse models. IL‐8‐related chemokines, NRAS signaling partners in this process, may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.


BioMed Research International | 2014

Metadherin, p50, and p65 Expression in Epithelial Ovarian Neoplasms: An Immunohistochemical Study

Ioanna Giopanou; Vasiliki Bravou; Panagiotis Papanastasopoulos; Ioannis Lilis; Panagiotis Aroukatos; Dionysios J. Papachristou; Sophia Kounelis; Helen A. Papadaki

NF-κB signaling promotes cancer progression in a large number of malignancies. Metadherin, a coactivator of the NF-κB transcription complex, was recently identified to regulate different signaling pathways that are closely related to cancer. We assessed the immunohistochemical expression of p50, p65, and metadherin in 30 ovarian carcinomas, 15 borderline ovarian tumours, and 31 benign ovarian cystadenomas. Ovarian carcinomas exhibited significantly higher expression of all 3 markers compared to benign ovarian tumours. Borderline ovarian tumours demonstrated significantly higher expression for all 3 markers compared to benign cystadenomas. Ovarian carcinomas demonstrated significantly higher expression of p50 and metadherin compared to borderline ovarian tumours, whereas no significant difference was noted in p65 expression between ovarian carcinomas and borderline ovarian tumours. There was a strong correlation with the expression levels of p50, p65, and metadherin, whereas no correlation was observed with either grade or stage. Strong p50, p65, and metadherin expression was associated with a high probability to distinguish ovarian carcinomas over borderline and benign ovarian tumours, as well as borderline ovarian tumours over benign ovarian neoplasms. A gradual increase in the expression of these molecules is noted when moving across the spectrum of ovarian carcinogenesis, from borderline ovarian tumours to epithelial carcinomas.


The Journal of Clinical Endocrinology and Metabolism | 2013

Nrf2 Is Commonly Activated in Papillary Thyroid Carcinoma, and It Controls Antioxidant Transcriptional Responses and Viability of Cancer Cells

Panos G. Ziros; Stavroula D. Manolakou; Ioannis G. Habeos; Ioannis Lilis; Dionysios V. Chartoumpekis; Vasiliki Koika; Paula Soares; Venetsana Kyriazopoulou; Chrisoula D. Scopa; Dionysios J. Papachristou; Gerasimos P. Sykiotis

CONTEXT The antioxidant transcription factor NFE2-related factor 2 (Nrf2), encoded by NFE2L2, has been implicated as mediator of thyroid cancer cell line resistance to proteasome inhibitors. However, the activity status of the Nrf2 pathway in human thyroid cancer remains unknown. OBJECTIVE The aims of this study were assessment of the activity status of the Nrf2 pathway in papillary thyroid carcinoma (PTC) and investigation of its role(s) in antioxidant transcriptional responses and viability of cancer cells. DESIGN AND SETTING We conducted retrospective immunohistochemical analyses of PTC specimens, adjacent normal tissue, and benign lesions; assays of viability and gene expression in the PTC cell lines K1 and TPC-1 after genetic/pharmacological manipulation of Nrf2; and DNA sequencing at an academic medical center. PATIENTS The study included 42 PTC and 42 benign lesions (24 adenomas and 18 nodular hyperplasias). MAIN OUTCOME MEASURES We assessed the abundance of Nrf2, Nqo1, Keap1, and 4HNE; cell line viability and mRNA expression of Nrf2, Nqo1, and Trdx1; and the sequence of NFE2L2, KEAP1, and BRAF. RESULTS Nrf2 and its target Nqo1 were undetectable in normal tissue; their levels were significantly higher in PTC than in benign lesions (P < .0001 and P = .024, respectively). The Nrf2 inhibitor Keap1 was variably abundant in PTC, and its levels did not correlate with Nrf2 (P = .37), arguing against decreased levels as the mechanism for Nrf2 activation. The oxidized lipid 4HNE was more abundant in PTC than normal tissue (P < .001), indicating oxidative stress. Nrf2 mediated transcriptional antioxidant responses in both the PTC cell lines K1 and TPC-1 and in the nontransformed cell line TAD2, but it conferred a viability advantage specifically in the PTC cell lines. CONCLUSIONS The high activity of Nrf2 in PTC warrants further exploration of this pathways potential diagnostic, prognostic, and/or therapeutic utility in PTC.


OncoImmunology | 2017

Tumor-derived osteopontin isoforms cooperate with TRP53 and CCL2 to promote lung metastasis

Ioanna Giopanou; Ioannis Lilis; Vassilios Papaleonidopoulos; Theodora Agalioti; Nikolaos Kanellakis; Nikolitsa Spiropoulou; Magda Spella; Georgios T. Stathopoulos

ABSTRACT The lungs are ubiquitous receptacles of metastases originating from various bodily tumors. Although osteopontin (SPP1) has been associated with tumor dissemination, the role of its isoforms in lung-directed metastasis is incompletely understood. We employed syngeneic mouse models of spontaneous and induced lung-targeted metastasis in C57BL/6 mice competent and deficient in both Spp1 alleles. Tumor-derived osteopontin expression was modulated using either stable anti-Spp1 RNA interference, or forced overexpression of intracellular and secreted Spp1 isoforms. Identified osteopontins downstream partners were validated using lung adenocarcinoma cells conditionally lacking the Trp53 gene and Ccr2-deficient mice. We determined that host-derived osteopontin was dispensable for pulmonary colonization by different tumor types. Oppositely, tumor-originated intracellular osteopontin promoted tumor cell survival by preventing tumor-related protein 53-mediated apoptosis, while the secretory osteopontin functioned in a paracrine mode to accelerate lung metastasis by enhancing tumor-derived C–C-motif chemokine ligand 2 signaling to cognate host receptors. As new ways to target osteopontin signaling are becoming available, the cytokine may constitute an important therapeutic target against pulmonary involvement by cancers of other organs.


Cancer Investigation | 2015

Focal Adhesion Proteins α- and β-Parvin are Overexpressed in Human Colorectal Cancer and Correlate with Tumor Progression

Vasiliki Bravou; Anna G. Antonacopoulou; Sofia Papanikolaou; Sofia Nikou; Ioannis Lilis; Efstathia Giannopoulou; Haralabos P. Kalofonos

This study aims to address the role of focal adhesion proteins α- and β-parvin in human colorectal carcinoma (CRC). Expression of α- and β-parvin was examined by immunohisto- chemistry and real-time RT-PCR in a series of human CRC. Parvins were overexpressed in CRC and their expression correlated significantly with tumor invasion, lymph node metastasis, and disease stage. A significant positive correlation of parvins protein expression with overexpression of integrin-linked kinase, p-AKT, and nuclear β-catenin, as well as with downregulation of E-cadherin was also observed. In conclusion, overexpression of α- and β-parvin seems to be implicated in human colorectal cancer progression.

Collaboration


Dive into the Ioannis Lilis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge