Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ioannis P. Nezis is active.

Publication


Featured researches published by Ioannis P. Nezis.


Current Biology | 2007

ESCRTs and Fab1 regulate distinct steps of autophagy

Tor Erik Rusten; Thomas Vaccari; Karine Lindmo; Lina M. Rodahl; Ioannis P. Nezis; Catherine Sem-Jacobsen; Franz Wendler; Jean-Paul Vincent; Andreas Brech; David Bilder; Harald Stenmark

Eukaryotes use autophagy to turn over organelles, protein aggregates, and cytoplasmic constituents. The impairment of autophagy causes developmental defects, starvation sensitivity, the accumulation of protein aggregates, neuronal degradation, and cell death [1, 2]. Double-membraned autophagosomes sequester cytoplasm and fuse with endosomes or lysosomes in higher eukaryotes [3], but the importance of the endocytic pathway for autophagy and associated disease is not known. Here, we show that regulators of endosomal biogenesis and functions play a critical role in autophagy in Drosophila melanogaster. Genetic and ultrastructural analysis showed that subunits of endosomal sorting complex required for transport (ESCRT)-I, -II and -III, as well as their regulatory ATPase Vps4 and the endosomal PtdIns(3)P 5-kinase Fab1, all are required for autophagy. Although the loss of ESCRT or Vps4 function caused the accumulation of autophagosomes, probably because of inhibited fusion with the endolysosomal system, Fab1 activity was necessary for the maturation of autolysosomes. Importantly, reduced ESCRT functions aggravated polyglutamine-induced neurotoxicity in a model for Huntingtons disease. Thus, this study links ESCRT function with autophagy and aggregate-induced neurodegeneration, thereby providing a plausible explanation for the fact that ESCRT mutations are involved in inherited neurodegenerative disease in humans [4].


Journal of Cell Biology | 2008

Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain

Ioannis P. Nezis; Anne Simonsen; Antonia P. Sagona; Kim D. Finley; Sébastien Gaumer; Didier Contamine; Tor Erik Rusten; Harald Stenmark; Andreas Brech

p62 has been proposed to mark ubiquitinated protein bodies for autophagic degradation. We report that the Drosophila melanogaster p62 orthologue, Ref(2)P, is a regulator of protein aggregation in the adult brain. We demonstrate that Ref(2)P localizes to age-induced protein aggregates as well as to aggregates caused by reduced autophagic or proteasomal activity. A similar localization to protein aggregates is also observed in D. melanogaster models of human neurodegenerative diseases. Although atg8a autophagy mutant flies show accumulation of ubiquitin- and Ref(2)P-positive protein aggregates, this is abrogated in atg8a/ref(2)P double mutants. Both the multimerization and ubiquitin binding domains of Ref(2)P are required for aggregate formation in vivo. Our findings reveal a major role for Ref(2)P in the formation of ubiquitin-positive protein aggregates both under physiological conditions and when normal protein turnover is inhibited.


Nature Cell Biology | 2010

PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody

Antonia P. Sagona; Ioannis P. Nezis; Nina Marie Pedersen; Knut Liestøl; John S. Poulton; Tor Erik Rusten; Rolf I. Skotheim; Camilla Raiborg; Harald Stenmark

Several subunits of the class III phosphatidylinositol-3-OH kinase (PI(3)K-III) complex are known as tumour suppressors. Here we uncover a function for this complex and its catalytic product phosphatidylinositol-3-phosphate (PtdIns(3)P) in cytokinesis. We show that PtdIns(3)P localizes to the midbody during cytokinesis and recruits a centrosomal protein, FYVE-CENT (ZFYVE26), and its binding partner TTC19, which in turn interacts with CHMP4B, an endosomal sorting complex required for transport (ESCRT)-III subunit implicated in the abscission step of cytokinesis. Translocation of FYVE-CENT and TTC19 from the centrosome to the midbody requires another FYVE-CENT-interacting protein, the microtubule motor KIF13A. Depletion of the VPS34 or Beclin 1 subunits of PI(3)K-III causes cytokinesis arrest and an increased number of binucleate and multinucleate cells, in a similar manner to the depletion of FYVE-CENT, KIF13A or TTC19. These results provide a mechanism for the translocation and docking of a cytokinesis regulatory machinery at the midbody.


Journal of Cell Biology | 2010

Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis.

Ioannis P. Nezis; Bhupendra V. Shravage; Antonia P. Sagona; Trond Lamark; Geir Bjørkøy; Terje Johansen; Tor Erik Rusten; Andreas Brech; Eric H. Baehrecke; Harald Stenmark

Blocking autophagy protects the apoptosis inhibitor dBruce from destruction and promotes nurse cell survival in developing egg chambers.


Autophagy | 2011

p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects

Bryan J. Bartlett; Pauline Isakson; Jan Lewerenz; Heriberto Sanchez; Roxanne W. Kotzebue; Robert C. Cumming; Greg L. Harris; Ioannis P. Nezis; David Schubert; Anne Simonsen; Kim D. Finley

Suppression of macroautophagy, due to mutations or through processes linked to aging, results in the accumulation of cytoplasmic substrates that are normally eliminated by the pathway. This is a significant problem in long-lived cells like neurons, where pathway defects can result in the accumulation of aggregates containing ubiquitinated proteins. The p62/Ref(2)P family of proteins is involved in the autophagic clearance of cytoplasmic protein bodies or sequestosomes. These unique structures are closely associated with protein inclusions containing ubiquitin as well as key components of the autophagy pathway. In this study we show that detergent fractionation followed by western blot analysis of insoluble ubiquitinated proteins (IUP), mammalian p62 and its Drosophila homologue, Ref(2)P can be used to quantitatively assess the activity level of aggregate clearance (aggrephagy) in complex tissues. Using this technique we show that genetic or age-dependent changes that modify the long-term enhancement or suppression of aggrephagy can be identified. Moreover, using the Drosophila model system this method can be used to establish autophagy-dependent protein clearance profiles that are occurring under a wide range of physiological conditions including developmental, fasting and altered metabolic pathways. This technique can also be used to examine proteopathies that are associated with human disorders such as frontotemporal dementia, Huntington and Alzheimer disease. Our findings indicate that measuring IUP profiles together with an assessment of p62/Ref(2)P proteins can be used as a screening or diagnostic tool to characterize genetic and age-dependent factors that alter the long-term function of autophagy and the clearance of protein aggregates occurring within complex tissues and cells.


Journal of Cell Science | 2009

Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants

Thomas Vaccari; Tor Erik Rusten; Laurent Menut; Ioannis P. Nezis; Andreas Brech; Harald Stenmark; David Bilder

ESCRT proteins were initially isolated in yeast as a single functional set of conserved components controlling endosomal cargo sorting and multivesicular body (MVB) biogenesis. Recent work has suggested that metazoan ESCRT proteins might have more functionally diverse roles, but the limited availability of ESCRT mutants in species other than yeast has hampered a thorough analysis. Here, we used a genetic screening strategy based on both cell-autonomous and non-autonomous growth-promotion phenotypes to isolate null mutations in nearly half of the ESCRT-encoding genes of Drosophila, including components of ESCRT-I, ESCRT-II and ESCRT-III complexes. All ESCRT components are required for trafficking of ubiquitylated proteins and are required to prevent excess Notch and EGFR signaling. However, cells lacking certain ESCRT-III components accumulate fewer ubiquitylated molecules in endosomes and display reduced degrees of cell proliferation compared with those lacking components of ESCRT-I and ESCRT-II. Moreover, although we find by ultrastructural analysis that MVB formation is impaired in ESCRT-I and ESCRT-II mutant cells, MVB biogenesis still occurs to some degree in ESCRT-III mutant cells. This work highlights the multiple cell biological and developmental roles of ESCRT proteins in Drosophila, suggests that the metazoan ESCRT-I, ESCRT-II and ESCRT-III complexes do not serve identical functions, and provides the basis for an extensive analysis of metazoan ESCRT function.


Antioxidants & Redox Signaling | 2012

p62 at the interface of autophagy, oxidative stress signaling, and cancer.

Ioannis P. Nezis; Harald Stenmark

SIGNIFICANCE Sequestosome 1 (p62/SQSTM1) is a multifunctional adapter protein implicated in selective autophagy, cell signaling pathways, and tumorigenesis. RECENT ADVANCES Recent evidence has revealed that p62/SQSTM1 has a critical role in an oxidative stress response pathway by its direct interaction with the ubiquitin ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), which results in constitutive activation of the transcription factor NF-E2-related factor 2 (NRF2). CRITICAL ISSUES Both NRF2 and KEAP1 are frequently mutated in cancer. The findings just cited uncover a link between p62/SQSTM1, autophagy, and the KEAP1-NRF2 stress response pathway in tumorigenesis and shed light on the interplay between autophagy and cancer. FUTURE DIRECTIONS Here, we review the mechanisms by which p62/SQSTM1 implements its multiple roles in the regulation of tumorigenesis with emphasis on the KEAP1-NRF2 stress response signaling pathway. Uncovering the molecular mechanisms of p62/SQSTM1 function in oxidative stress signaling might contribute to elucidating its role in tumorigenesis.


Autophagy | 2009

Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy.

Ioannis P. Nezis; Trond Lamark; Athanassios D. Velentzas; Tor Erik Rusten; Geir Bjørkøy; Terje Johansen; Issidora S. Papassideri; Dimitrios J. Stravopodis; Lukas H. Margaritis; Harald Stenmark; Andreas Brech

Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.


Autophagy | 2010

Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives

Davide Malagoli; Fábio Camargo Abdalla; Yang Cao; Qili Feng; Kozo Fujisaki; Gregorc A; Tomohide Matsuo; Ioannis P. Nezis; Issidora S. Papassideri; Miklós Sass; Elaine C.M. Silva-Zacarin; Gianluca Tettamanti; Rika Umemiya-Shirafuji

Autophagic process is one of the best examples of a conserved mechanism of survival in eukaryotes. At the molecular level there are impressive similarities between unicellular and multicellular organisms, but there is increasing evidence that the same process may be used for different ends, i.e., survival or death, at least at cellular levels. Arthropods encompass a wide variety of invertebrates such as insects, crustaceans and spiders, and thus represent the taxon in which most of the investigations on autophagy in non-mammalian models are performed. The present review is focused on the genetic basis and the physiological meaning of the autophagic process on key models of arthropods. The involvement of autophagy in programmed cell death, especially during oogenesis and development, is also discussed.


Autophagy | 2014

iLIR: A web resource for prediction of Atg8-family interacting proteins

Ioanna Kalvari; Stelios Tsompanis; Nitha C. Mulakkal; Richard Osgood; Terje Johansen; Ioannis P. Nezis; Vasilis J. Promponas

Macroautophagy was initially considered to be a nonselective process for bulk breakdown of cytosolic material. However, recent evidence points toward a selective mode of autophagy mediated by the so-called selective autophagy receptors (SARs). SARs act by recognizing and sorting diverse cargo substrates (e.g., proteins, organelles, pathogens) to the autophagic machinery. Known SARs are characterized by a short linear sequence motif (LIR-, LRS-, or AIM-motif) responsible for the interaction between SARs and proteins of the Atg8 family. Interestingly, many LIR-containing proteins (LIRCPs) are also involved in autophagosome formation and maturation and a few of them in regulating signaling pathways. Despite recent research efforts to experimentally identify LIRCPs, only a few dozen of this class of-often unrelated-proteins have been characterized so far using tedious cell biological, biochemical, and crystallographic approaches. The availability of an ever-increasing number of complete eukaryotic genomes provides a grand challenge for characterizing novel LIRCPs throughout the eukaryotes. Along these lines, we developed iLIR, a freely available web resource, which provides in silico tools for assisting the identification of novel LIRCPs. Given an amino acid sequence as input, iLIR searches for instances of short sequences compliant with a refined sensitive regular expression pattern of the extended LIR motif (xLIR-motif) and retrieves characterized protein domains from the SMART database for the query. Additionally, iLIR scores xLIRs against a custom position-specific scoring matrix (PSSM) and identifies potentially disordered subsequences with protein interaction potential overlapping with detected xLIR-motifs. Here we demonstrate that proteins satisfying these criteria make good LIRCP candidates for further experimental verification. Domain architecture is displayed in an informative graphic, and detailed results are also available in tabular form. We anticipate that iLIR will assist with elucidating the full complement of LIRCPs in eukaryotes.Macroautophagy was initially considered to be a nonselective process for bulk breakdown of cytosolic material. However, recent evidence points toward a selective mode of autophagy mediated by the so-called selective autophagy receptors (SARs). SARs act by recognizing and sorting diverse cargo substrates (e.g., proteins, organelles, pathogens) to the autophagic machinery. Known SARs are characterized by a short linear sequence motif (LIR-, LRS-, or AIM-motif) responsible for the interaction between SARs and proteins of the Atg8 family. Interestingly, many LIR-containing proteins (LIRCPs) are also involved in autophagosome formation and maturation and a few of them in regulating signaling pathways. Despite recent research efforts to experimentally identify LIRCPs, only a few dozen of this class of—often unrelated—proteins have been characterized so far using tedious cell biological, biochemical, and crystallographic approaches. The availability of an ever-increasing number of complete eukaryotic genomes provides a grand challenge for characterizing novel LIRCPs throughout the eukaryotes. Along these lines, we developed iLIR, a freely available web resource, which provides in silico tools for assisting the identification of novel LIRCPs. Given an amino acid sequence as input, iLIR searches for instances of short sequences compliant with a refined sensitive regular expression pattern of the extended LIR motif (xLIR-motif) and retrieves characterized protein domains from the SMART database for the query. Additionally, iLIR scores xLIRs against a custom position-specific scoring matrix (PSSM) and identifies potentially disordered subsequences with protein interaction potential overlapping with detected xLIR-motifs. Here we demonstrate that proteins satisfying these criteria make good LIRCP candidates for further experimental verification. Domain architecture is displayed in an informative graphic, and detailed results are also available in tabular form. We anticipate that iLIR will assist with elucidating the full complement of LIRCPs in eukaryotes.

Collaboration


Dive into the Ioannis P. Nezis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Issidora S. Papassideri

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Andreas Brech

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukas H. Margaritis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Dimitrios J. Stravopodis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge