Ioannis Papadimitriou
International School for Advanced Studies
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioannis Papadimitriou.
arXiv: High Energy Physics - Theory | 2004
Ioannis Papadimitriou; Kostas Skenderis
In the first part of this paper we provide a short introduction to the AdS/CFT correspondence and to holographic renormalization. We discuss how QFT correlation functions, Ward identities and anomalies are encoded in the bulk geometry. In the second part we develop a Hamiltonian approach to the method of holographic renormalization, with the radial coordinate playing the role of time. In this approach regularized correlation functions are related to canonical momenta and the near-boundary expansions of the standard approach are replaced by covariant expansions where the various terms are organized according to their dilatation weight. This leads to universal expressions for counterterms and one-point functions (in the presence of sources) that are valid in all dimensions. The new approach combines optimally elements from all previous methods and supersedes them in efficiency.
Journal of High Energy Physics | 2004
Ioannis Papadimitriou; Kostas Skenderis
We discuss the computation of correlation functions in holographic RG flows. The method utilizes a recently developed hamiltonian version of holographic renormalization and it is more efficient than previous methods. A significant simplification concerns the treatment of infinities: instead of performing a general analysis of counterterms, we develop a method where only the contribution of counterterms to any given correlators needs to be computed. For instance, the computation of renormalized 2-point functions requires only an analysis at the linearized level. We illustrate the method by discussing flat and AdS-sliced domain walls. In particular, we discuss correlation functions of the Janus solution, a recently discovered non-supersymmetric but stable AdS-sliced domain wall.
Journal of High Energy Physics | 2011
Ioannis Papadimitriou
We consider a very general dilaton-axion system coupled to Einstein-Hilbert gravity in arbitrary dimension and we carry out holographic renormalization for any dimension up to and including five dimensions. This is achieved by developing a new systematic algorithm for iteratively solving the radial Hamilton-Jacobi equation in a derivative expansion. The boundary term derived is valid not only for asymptotically AdS backgrounds, but also for more general asymptotics, including non-conformal branes and Improved Holographic QCD. In the second half of the paper, we apply the general result to Improved Holographic QCD with arbitrary dilaton potential. In particular, we derive the generalized Fefferman-Graham asymptotic expansions and provide a proof of the holographic Ward identities.
Physical Review D | 2008
Carlos Hoyos; Carlos Nunez; Ioannis Papadimitriou
We study the String dual to N = 1 SQCD deformed by a quartic superpotential in the quark superfields. We present a unified view of the previous results in the literature and find new exact solutions and new asymptotic solutions. Then we study the Physics encoded in these backgrounds, giving among other things a resolution to an old puzzle related to the beta function and a sufficient criteria for screening. We also extend our results to the SO(Nc) case where we present a candidate for the Wilson loop in the spinorial representation. Various aspects of this line of research are critically analyzed. [email protected] [email protected] [email protected]
International Journal of Modern Physics A | 2010
Carlos Nunez; Ioannis Papadimitriou; Maurizio Piai
Within the context of a string-theory dual to gauge theories with gauge group SU(Nc) and large Nc, we identify a class of solutions to the background equations for which a suitably defined dual of the gauge coupling exhibits the features of a walking theory. We find evidence for three distinct, dynamically generated scales, characterizing walking, symmetry breaking and confinement, and we put them in correspondence with field theory by an analysis of the operators driving the flow.
Physical Review D | 2003
Mirjam Cvetic; Ioannis Papadimitriou
We present new classes of supersymmetric Standard-like models from type IIA T 6 /(Z2 × Z2) orientifold with intersecting D6-branes. D6-branes can wrap general supersymmetric three-cycles of T 6 = T 2 × T 2 × T 2 , and any T 2 is allowed to be tilted. The models still suffer from additional exotics, however we obtained solutions with fewer Higgs doublets, as well as models with all three families of left-handed quarks and leptons arising from the same intersecting sector, and examples of a genuine left-right symmetric model with three copies of left-handed and right-handed families of quarks and leptons.
Journal of High Energy Physics | 2010
Ioannis Papadimitriou
The gauge/string dualities have drawn attention to a class of variational problems on a boundary at infinity, which are not well defined unless a certain boundary term is added to the classical action. In the context of supergravity in asymptotically AdS spaces these problems are systematically addressed by the method of holographic renormalization. We argue that this class of a priori ill defined variational problems extends far beyond the realm of holographic dualities. As we show, exactly the same issues arise in gravity in non asymptotically AdS spaces, in point particles with certain unbounded from below potentials, and even fundamental strings in flat or AdS backgrounds. We show that the variational problem in all such cases can be made well defined by the following procedure, which is intrinsic to the system in question and does not rely on the existence of a holographically dual theory: (i) The first step is the construction of the space of the most general asymptotic solutions of the classical equations of motion that inherits a well defined symplectic form from that on phase space. The requirement of a well defined symplectic form is essential and often leads to a necessary repackaging of the degrees of freedom. (ii) Once the space of asymptotic solutions has been constructed in terms of the correct degrees of freedom, then there exists a boundary term that is obtained as a certain solution of the Hamilton-Jacobi equation which simultaneously makes the variational problem well defined and preserves the symplectic form. This procedure is identical to holographic renormalization in the case of asymptotically AdS gravity, but it is applicable to any Hamiltonian system.
Journal of High Energy Physics | 2016
Mirjam Cvetic; Ioannis Papadimitriou
A bstractWe construct the holographic dictionary for both running and constant dilaton solutions of the two dimensional Einstein-Maxwell-Dilaton theory that is obtained by a circle reduction from Einstein-Hilbert gravity with negative cosmological constant in three dimensions. This specific model ensures that the dual theory has a well defined ultraviolet completion in terms of a two dimensional conformal field theory, but our results apply qualitatively to a wider class of two dimensional dilaton gravity theories. For each type of solutions we perform holographic renormalization, compute the exact renormalized one-point functions in the presence of arbitrary sources, and derive the asymptotic symmetries and the corresponding conserved charges. In both cases we find that the scalar operator dual to the dilaton plays a crucial role in the description of the dynamics. Its source gives rise to a matter conformal anomaly for the running dilaton solutions, while its expectation value is the only non trivial observable for constant dilaton solutions. The role of this operator has been largely overlooked in the literature. We further show that the only non trivial conserved charges for running dilaton solutions are the mass and the electric charge, while for constant dilaton solutions only the electric charge is non zero. However, by uplifting the solutions to three dimensions we show that constant dilaton solutions can support non trivial extended symmetry algebras, including the one found by Compère, Song and Strominger [1], in agreement with the results of Castro and Song [2]. Finally, we demonstrate that any solution of this specific dilaton gravity model can be uplifted to a family of asymptotically AdS2 × S2 or conformally AdS2 × S2 solutions of the STU model in four dimensions, including non extremal black holes. The four dimensional solutions obtained by uplifting the running dilaton solutions coincide with the so called ‘subtracted geometries’, while those obtained from the uplift of the constant dilaton ones are new.
Journal of High Energy Physics | 2015
Wissam Chemissany; Ioannis Papadimitriou
A bstractWe provide a general algorithm for constructing the holographic dictionary for any asymptotically locally Lifshitz background, with or without hyperscaling violation, and for any values of the dynamical exponents z and θ, as well as the vector hyperscaling violating exponent [1, 2], that are compatible with the null energy condition. The analysis is carried out for a very general bottom up model of gravity coupled to a massive vector field and a dilaton with arbitrary scalar couplings. The solution of the radial Hamilton-Jacobi equation is obtained recursively in the form of a graded expansion in eigenfunctions of two commuting operators [3], which are the appropriate generalization of the dilatation operator for non scale invariant and Lorentz violating boundary conditions. The Fefferman-Graham expansions, the sources and 1-point functions of the dual operators, the Ward identities, as well as the local counterterms required for holographic renormalization all follow from this asymptotic solution of the radial Hamilton-Jacobi equation. We also find a family of exact backgrounds with z > 1 and θ > 0 corresponding to a marginal deformation shifting the vector hyperscaling violating parameter and we present an example where the conformal anomaly contains the only z = 2 conformal invariant in d = 2 with four spatial derivatives.
Nuclear Physics | 2011
Jerome Gaillard; Dario Martelli; Carlos Nunez; Ioannis Papadimitriou
Abstract We discuss a simple transformation that allows to generate S U ( 3 ) structure solutions of Type IIB supergravity with RR fluxes, starting from non-Kahler solutions of Type I supergravity. The method may be applied also in the presence of supersymmetric source branes. We apply this transformation to a solution describing fivebranes wrapped on the S 2 of the resolved conifold with additional flavour fivebrane sources. The resulting solution is a generalisation of the resolved deformed conifold solution of Butti et al. (2005) [1] by the addition of D5 brane and D3 brane sources. We propose that this solution may be interpreted in terms of a combined effect of Higgsing and cascade of Seiberg dualities in the dual field theory.