Ioulia Rouzina
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ioulia Rouzina.
Progress in Nucleic Acid Research and Molecular Biology | 2005
Judith G. Levin; Jianhui Guo; Ioulia Rouzina; Karin Musier-Forsyth
Publisher Summary This chapter focuses on recent biochemical and biophysical studies that examine the nucleic acid chaperone function of HIV‐1 nucleocapsid protein (NC) and its critical role in facilitating specific and efficient reverse transcription. This chapter also describes the effect of NC on individual steps in viral DNA synthesis. This chapter also summarizes what is known about NC structure, NC nucleic acid binding properties, and the contribution of the zinc fingers to chaperone activity. In addition, this chapter also discusses new evidence that provides a model to explain the mechanism of NCs nucleic acid chaperone activity at the molecular level. Characterization of the mechanism of NCs chaperone activity in molecular terms has been invaluable for understanding NCs effect on specific steps in reverse transcription. NC binds nucleic acids noncooperatively and does not rely on protein– protein interactions to drive aggregation and annealing. Instead, NC‐induced nucleic acid aggregation appears to be facilitated by simple polyelectrolyte attraction, similar to that observed for many multivalent cations.
Biophysical Journal | 2002
Jay R. Wenner; Mark C. Williams; Ioulia Rouzina; Victor A. Bloomfield
As double-stranded DNA is stretched to its B-form contour length, models of polymer elasticity can describe the dramatic increase in measured force. When the molecule is stretched beyond this contour length, it shows a highly cooperative overstretching transition. We have measured the elasticity and overstretching transition as a function of monovalent salt concentration by stretching single DNA molecules in an optical tweezers apparatus. As the sodium ion concentration was decreased from 1000 to 2.57 mM, the persistence length of DNA increased from 46 to 59 nm, while the elastic stretch modulus remained approximately constant. These results are consistent with the model of Podgornik, et al. (2000, J. Chem. Phys. 113:9343-9350) using an effective DNA length per charge of 0.67 nm. As the monovalent salt concentration was decreased over the same range, the overstretching transition force decreased from 68 to 52 pN. This reduction in force is attributed to a decrease in the stability of the DNA double helix with decreasing salt concentration. Although, as was shown previously, the hydrogen bonds holding DNA strands in a helical conformation break as DNA is overstretched, these data indicate that both DNA strands remain close together during the transition.
Biophysical Journal | 2001
Ioulia Rouzina; Victor A. Bloomfield
The highly cooperative elongation of a single B-DNA molecule to almost twice its contour length upon application of a stretching force is interpreted as force-induced DNA melting. This interpretation is based on the similarity between experimental and calculated stretching profiles, when the force-dependent free energy of melting is obtained directly from the experimental force versus extension curves of double- and single-stranded DNA. The high cooperativity of the overstretching transition is consistent with a melting interpretation. The ability of nicked DNA to withstand forces greater than that at the transition midpoint is explained as a result of the one-dimensional nature of the melting transition, which leads to alternating zones of melted and unmelted DNA even substantially above the melting midpoint. We discuss the relationship between force-induced melting and the B-to-S transition suggested by other authors. The recently measured effect on T7 DNA polymerase activity of the force applied to a ssDNA template is interpreted in terms of preferential stabilization of dsDNA by weak forces approximately equal to 7 pN.
Biophysical Journal | 2001
Mark C. Williams; Jay R. Wenner; Ioulia Rouzina; Victor A. Bloomfield
When a single molecule of double-stranded DNA is stretched beyond its B-form contour length, the measured force shows a highly cooperative overstretching transition. We have investigated the source of this transition by altering helix stability with solution pH. As solution pH was increased from pH 6.0 to pH 10.6 in 250 mM NaCl, the overstretching transition force decreased from 67.0 +/- 0.8 pN to 56.2 +/- 0.8 pN, whereas the transition width remained nearly constant. As the pH was lowered from pH 6.0 to pH 3.1, the overstretching force decreased from 67.0 +/- 0.8 pN to 47.0 +/- 1.0 pN, but the transition width increased from 3.0 +/- 0.6 pN to 16.0 +/- 3 pN. These results quantitatively agree with a model that asserts that DNA strand dissociation, or melting, occurs during the overstretching transition.
Biophysical Journal | 1998
Ioulia Rouzina; Victor A. Bloomfield
We propose a purely electrostatic mechanism by which small, mobile, multivalent cations can induce DNA bending. A multivalent cation binds at the entrance to the B-DNA major groove, between the two phosphate strands, electrostatically repelling sodium counterions from the neighboring phosphates. The unscreened phosphates on both strands are strongly attracted to the groove-bound cation. This leads to groove closure, accompanied by DNA bending toward the cationic ligand. We explicitly treat the dynamic character of the cation-DNA interaction using an adiabatic approximation, noting that DNA bending is much slower than the diffusion of nonspecifically bound, mobile cations. We make semiquantitative estimates of the free energy components of bending-electrostatic (with a sigmoidal distance-dependent dielectric function), elastic, and entropic cation localization-and find that the equilibrium state is bent B-DNA stabilized with a self-localized cation. This is a bending polaron, formation of which should be critically dependent on the strength of electrostatic interaction and the concentration of highly mobile cations available for self-localization. We predict that the resultant bend will be large (approximately 20-40 degrees), smooth (because it is spread over 6 bp), and infrequent. The stability of such a bend can be variable, from transient to highly stable (static) bending, observable with standard curvature-measuring techniques. We further predict that this bending mechanism will have an unusual sequence dependence: sequences with less binding specificity will be more bent, unless the specific binding site is in the major groove.
Biophysical Journal | 2001
Mark C. Williams; Jay R. Wenner; Ioulia Rouzina; Victor A. Bloomfield
When a single molecule of double-stranded DNA is stretched beyond its B-form contour length, the measured force shows a highly cooperative overstretching transition. We have measured the force at which this transition occurs as a function of temperature. To do this, single molecules of DNA were captured between two polystyrene beads in an optical tweezers apparatus. As the temperature of the solution surrounding a captured molecule was increased from 11 degrees C to 52 degrees C in 500 mM NaCl, the overstretching transition force decreased from 69 pN to 50 pN. This reduction is attributed to a decrease in the stability of the DNA double helix with increasing temperature. These results quantitatively agree with a model that asserts that DNA melting occurs during the overstretching transition. With this model, the data may be analyzed to obtain the change in the melting entropy DeltaS of DNA with temperature. The observed nonlinear temperature dependence of DeltaS is a result of the positive change in heat capacity of DNA upon melting, which we determine from our stretching measurements to be DeltaC(p) = 60 +/- 10 cal/mol K bp, in agreement with calorimetric measurements.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Mark C. Williams; Ioulia Rouzina; Jay R. Wenner; Robert J. Gorelick; Karin Musier-Forsyth; Victor A. Bloomfield
The nucleocapsid protein (NC) of HIV type 1 is a nucleic acid chaperone that facilitates the rearrangement of nucleic acids into conformations containing the maximum number of complementary base pairs. We use an optical tweezers instrument to stretch single DNA molecules from the helix to coil state at room temperature in the presence of NC and a mutant form (SSHS NC) that lacks the two zinc finger structures present in NC. Although both NC and SSHS NC facilitate annealing of complementary strands through electrostatic attraction, only NC destabilizes the helical form of DNA and reduces the cooperativity of the helix-coil transition. In particular, we find that the helix-coil transition free energy at room temperature is significantly reduced in the presence of NC. Thus, upon NC binding, it is likely that thermodynamic fluctuations cause continuous melting and reannealing of base pairs so that DNA strands are able to rapidly sample configurations to find the lowest energy state. The reduced cooperativity allows these fluctuations to occur in the middle of complex double-stranded structures. The reduced stability and cooperativity, coupled with the electrostatic attraction generated by the high charge density of NC, is responsible for the nucleic acid chaperone activity of this protein.
Biophysical Journal | 2001
Ioulia Rouzina; Victor A. Bloomfield
In this paper, we consider the implications of the general theory developed in the accompanying paper, to interpret experiments on DNA overstretching that involve variables such as solution temperature, pH, and ionic strength. We find the DNA helix-coil phase boundary in the force-temperature space. At temperatures significantly below the regular (zero force) DNA melting temperature, the overstretching force, f(ov)(T), is predicted to decrease nearly linearly with temperature. We calculate the slope of this dependence as a function of entropy and heat-capacity changes upon DNA melting. Fitting of the experimental f(ov)(T) dependence allows determination of both of these quantities in very good agreement with their calorimetric values. At temperatures slightly above the regular DNA melting temperature, we predict stabilization of dsDNA by moderate forces, and destabilization by higher forces. Thus the DNA stretching curves, f(b), should exhibit two rather than one overstretching transitions: from single stranded (ss) to double stranded (ds) and then back at the higher force. We also predict that any change in DNA solution conditions that affects its melting temperature should have a similar effect on DNA overstretching force. This result is used to calculate the dependence of DNA overstretching force on solution pH, f(ov)(pH), from the known dependence of DNA melting temperature on pH. The calculated f(ov)(pH) is in excellent agreement with its experimental determination (M. C. Williams, J. R. Wenner, I. Rouzina, and V. A. Bloomfield, Biophys. J., accepted for publication). Finally, we quantitatively explain the measured dependence of DNA overstretching force on solution ionic strength for crosslinked and noncrosslinked DNA. The much stronger salt dependence of f(ov) in noncrosslinked DNA results from its lower linear charge density in the melted state, compared to crosslinked or double-stranded overstretched S-DNA.
Current Opinion in Structural Biology | 2002
Mark C. Williams; Ioulia Rouzina
Experiments in which single molecules of RNA and DNA are stretched, and the resulting force as a function of extension is measured have yielded new information about the physical, chemical and biological properties of these important molecules. The behavior of both single-stranded and double-stranded nucleic acids under changing solution conditions, such as ionic strength, pH and temperature, has been studied in detail. There has also been progress in using these techniques to study both the kinetics and equilibrium thermodynamics of DNA-protein interactions. These studies generate unique insights into the functions of these proteins in the cell.
Nucleic Acids Research | 2006
Margareta Cruceanu; Maria A. Urbaneja; Catherine V. Hixson; Donald G. Johnson; Siddhartha A.K. Datta; Matthew J. Fivash; Andrew G. Stephen; Robert J. Fisher; Robert J. Gorelick; José R Casas-Finet; Alan Rein; Ioulia Rouzina; Mark C. Williams
The Gag polyprotein of HIV-1 is essential for retroviral replication and packaging. The nucleocapsid (NC) protein is the primary region for the interaction of Gag with nucleic acids. In this study, we examine the interactions of Gag and its NC cleavage products (NCp15, NCp9 and NCp7) with nucleic acids using solution and single molecule experiments. The NC cleavage products bound DNA with comparable affinity and strongly destabilized the DNA duplex. In contrast, the binding constant of Gag to DNA was found to be ∼10-fold higher than that of the NC proteins, and its destabilizing effect on dsDNA was negligible. These findings are consistent with the primary function of Gag as a nucleic acid binding and packaging protein and the primary function of the NC proteins as nucleic acid chaperones. Also, our results suggest that NCp7s capability for fast sequence-nonspecific nucleic acid duplex destabilization, as well as its ability to facilitate nucleic acid strand annealing by inducing electrostatic attraction between strands, likely optimize the fully processed NC protein to facilitate complex nucleic acid secondary structure rearrangements. In contrast, Gags stronger DNA binding and aggregation capabilities likely make it an effective chaperone for processes that do not require significant duplex destabilization.