Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ipek Yalcin is active.

Publication


Featured researches published by Ipek Yalcin.


Biological Psychiatry | 2011

A Time-Dependent History of Mood Disorders in a Murine Model of Neuropathic Pain

Ipek Yalcin; Yohann Bohren; Elisabeth Waltisperger; Dominique Sage-Ciocca; Jerry C. Yin; Marie-José Freund-Mercier; Michel Barrot

BACKGROUND Chronic pain is clinically associated with the development of affective disorders. However, studies in animal models of neuropathic pain are contradictory and the relationship with mood disorders remains unclear. In this study, we aimed to characterize the affective consequences of neuropathic pain over time and to study potential underlying mechanisms. METHODS Neuropathic pain was induced by inserting a polyethylene cuff around the main branch of the right sciatic nerve in C57BL/6J mice. Anxiety- and depression-related behaviors were assessed over 2 months, using a battery of tests, such as elevated plus maze, marble burying, novelty suppressed feeding, splash test, and forced swimming test. Plasma corticosterone levels were assessed by radioimmunoassay. We also investigated changes in cyclic adenosine monophosphate response element (CRE) activity using CRE-LacZ transgenic mice. RESULTS Mice developed anxiety-related behavior 4 weeks after induction of the neuropathy, and depression-related behaviors were observed after 6 to 8 weeks. Control and neuropathic mice did not differ for basal or stress-induced levels of corticosterone or for hypothalamic-pituitary-adrenal axis negative feedback. After 8 weeks, the CRE-mediated activity decreased in the outer granule layer of dentate gyrus of neuropathic mice but not in the amygdala or in the anterior cingulate cortex. CONCLUSIONS Our results demonstrate that the affective consequences of neuropathic pain evolve over time, independently from the hypothalamic-pituitary-adrenal axis, which remains unaffected. CRE-mediated transcription within a limbic structure was altered at later time points of the neuropathy. These experiments provide a preclinical model to study time-dependent development of mood disorders and the underlying mechanism in a neuropathic pain context.


Annals of Neurology | 2009

β2-adrenoceptors are critical for antidepressant treatment of neuropathic pain†

Ipek Yalcin; Nada Choucair-Jaafar; Malika Benbouzid; Luc-Henri Tessier; André Muller; Lutz Hein; M.J. Freund-Mercier; Michel Barrot

Tricyclic antidepressants (TCAs) are one of the first‐line pharmacological treatments against neuropathic pain. TCAs increase the extracellular concentrations of noradrenaline and serotonin by blocking the reuptake transporters of these amines. However, the precise downstream mechanism leading to the therapeutic action remains identified. In this work, we evaluated the role of adrenergic receptors (ARs) in the action of TCAs.


Biological Psychiatry | 2008

Delta-opioid receptors are critical for tricyclic antidepressant treatment of neuropathic allodynia.

Malika Benbouzid; Claire Gaveriaux-Ruff; Ipek Yalcin; Elisabeth Waltisperger; Luc-Henri Tessier; André Muller; Brigitte L. Kieffer; Marie José Freund-Mercier; Michel Barrot

BACKGROUND The therapeutic effect of antidepressant drugs against depression usually necessitates a chronic treatment. A large body of clinical evidence indicates that antidepressant drugs can also be highly effective against chronic neuropathic pain. However, the mechanism by which these drugs alleviate pain is still unclear. METHODS We used a murine model of neuropathic pain induced by sciatic nerve constriction to study the antiallodynic properties of a chronic treatment with the tricyclic antidepressants nortriptyline and amitriptyline. Using knockout and pharmacological approaches in mice, we determined the influence of delta-opioid receptors in the therapeutic action of chronic antidepressant treatment. RESULTS In our model, a chronic treatment by tricyclic antidepressant drugs totally suppresses the mechanical allodynia in neuropathic C57Bl/6J mice. This therapeutic effect can be acutely reversed by an injection of the delta-opioid receptor antagonist naltrindole. Moreover, the antiallodynic property of antidepressant treatment is absent in mice deficient for the delta-opioid receptor gene. CONCLUSIONS The antiallodynic effect of chronic antidepressant treatment is mediated by a recruitment of the endogenous opioid system acting through delta-opioid receptors.


European Journal of Pain | 2008

Chronic, but not acute, tricyclic antidepressant treatment alleviates neuropathic allodynia after sciatic nerve cuffing in mice

Malika Benbouzid; Nada Choucair-Jaafar; Ipek Yalcin; Elisabeth Waltisperger; André Muller; Marie José Freund-Mercier; Michel Barrot

Antidepressant drugs act mainly by blocking the noradrenaline and/or serotonin uptake sites and require a chronic treatment. Tricyclic antidepressants are among the first line treatments clinically recommended against neuropathic pain. As observed against depression, a chronic treatment is required for a therapeutic effect. However, both in depression‐related and pain‐related research in rodents, it is difficult to design models that reproduce the clinical conditions and are sensitive to chronic but not to acute treatment by antidepressant drugs. In this study, we used a murine neuropathic pain model induced by the unilateral insertion of a polyethylene cuff around the main branch of the sciatic nerve. This model induced a long‐lasting ipsilateral mechanical allodynia. We evidenced that chronic, but not acute, treatment with the tricyclic antidepressants nortriptyline or amitriptyline suppressed the cuff‐induced mechanical allodynia. On the contrary, fluoxetine, a selective serotonin reuptake inhibitor, remained ineffective. To understand which mechanism is recruited downstream in order to alleviate the allodynia, we tested the opioid receptor antagonist naloxone, the delta‐opioid receptor antagonist naltrindole and the kappa‐opioid receptor antagonist nor‐BNI. We show that the therapeutic effect of notriptyline implicates the endogenous opioid system, in particular the delta‐ and the kappa‐opioid receptors. For comparison, we tested the anticonvulsant gabapentin and showed that it alleviates neuropathic allodynia after 3 days of treatment. Naloxone had no effect on gabapentin therapeutic benefit, showing that antidepressants and anticonvulsants alleviate neuropathic allodynia through independent mechanisms. Our work provides a clinically relevant model to understand the mechanism by which chronic antidepressant treatment can alleviate neuropathic pain.


Neuroscience & Biobehavioral Reviews | 2014

Emotional consequences of neuropathic pain: insight from preclinical studies.

Ipek Yalcin; Florent Barthas; Michel Barrot

Mood disorders such as depression and anxiety are frequently observed in patients suffering from chronic pain, including neuropathic pain. While this comorbidity is clinically well established, the underlying mechanism(s) remained unclear. The recent development of animal models now allows addressing the consequences of neuropathic pain. In this review, we report the preclinical evidences from anatomical, neuroimaging, behavioral, pharmacological and biochemical studies that address the anxiodepressive consequences of neuropathic pain. We present an overview of rodent models of these consequences and we discuss the challenges and parameters to consider for generating these models. We then discuss the possible mechanism(s) underlying anxiodepressive consequences by describing morphological and functional changes. Information is provided concerning neuroanatomical changes and plasticity, including LTP and LTD, in the anterior cingulate cortex, the insula, the hippocampus, the amygdala and the mesolimbic system, neuroendocrine parameters concerning the hypothalamo-pituitary-adrenal axis, neuroimmune response including the role of glial cells and cytokines, monoamine systems and changes in locus coeruleus noradrenergic system, and neurotrophic factors such as BDNF.


Neurobiology of Disease | 2009

Β2-adrenoceptors are essential for desipramine, venlafaxine or reboxetine action in neuropathic pain

Ipek Yalcin; Luc-Henri Tessier; Nathalie Petit-Demoulière; Stéphane Doridot; Lutz Hein; M.J. Freund-Mercier; Michel Barrot

Neuropathic pain is a disease caused by a lesion or dysfunction of the nervous system. Antidepressants or anticonvulsants are presently the best available treatments. The mechanism by which antidepressants relieve neuropathic pain remains poorly understood. Using pharmacological and transgenic approaches in mice, we evaluated adrenergic receptor (AR) implication in the action of the tricyclic antidepressant desipramine, the noradrenaline and serotonin reuptake inhibitor venlafaxine, and the noradrenaline reuptake inhibitor reboxetine. Neuropathy was induced by cuff insertion around the sciatic nerve. We showed that chronic antidepressant treatment suppressed cuff-induced allodynia in wild-type mice but not in beta(2)-AR deficient mice, and/or that this antiallodynic action was blocked by intraperitoneal or intrathecal injection of the beta(2)-AR antagonist ICI 118,551 but not by the alpha(2)-AR antagonist yohimbine. We also showed that the anticonvulsant gabapentin was still effective in beta(2)-AR deficient mice. Our results demonstrate that beta(2)-ARs are essential for the antiallodynic action of antidepressant drugs.


Neuroscience | 2016

Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights.

Mélanie Kremer; Eric Salvat; André Muller; Ipek Yalcin; Michel Barrot

Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system. It is generally chronic and challenging to treat. The recommended pharmacotherapy for neuropathic pain includes the use of some antidepressants, such as tricyclic antidepressants (TCAs) (amitriptyline…) or serotonin and noradrenaline re-uptake inhibitors (duloxetine…), and/or anticonvulsants such as the gabapentinoids gabapentin or pregabalin. Antidepressant drugs are not acute analgesics but require a chronic treatment to relieve neuropathic pain, which suggests the recruitment of secondary downstream mechanisms as well as long-term molecular and neuronal plasticity. Noradrenaline is a major actor for the action of antidepressant drugs in a neuropathic pain context. Mechanistic hypotheses have implied the recruitment of noradrenergic descending pathways as well as the peripheral recruitment of noradrenaline from sympathetic fibers sprouting into dorsal root ganglia; and importance of both α2 and β2 adrenoceptors have been reported. These monoamine re-uptake inhibitors may also indirectly act as anti-proinflammatory cytokine drugs; and their therapeutic action requires the opioid system, particularly the mu (MOP) and/or delta (DOP) opioid receptors. Gabapentinoids, which target the voltage-dependent calcium channels α2δ-1 subunit, inhibit calcium currents, thus decreasing the excitatory transmitter release and spinal sensitization. Gabapentinoids also activate the descending noradrenergic pain inhibitory system coupled to spinal α2 adrenoceptors. Gabapentinoid treatment may also indirectly impact on neuroimmune actors, like proinflammatory cytokines. These drugs are effective against neuropathic pain both with acute administration at high dose and with repeated administration. This review focuses on mechanistic knowledge concerning chronic antidepressant treatment and gabapentinoid treatment in a neuropathic pain context.


Biological Psychiatry | 2015

The Anterior Cingulate Cortex Is a Critical Hub for Pain-Induced Depression

Florent Barthas; Jim Sellmeijer; Sylvain Hugel; Elisabeth Waltisperger; Michel Barrot; Ipek Yalcin

BACKGROUND Besides chronic stress, chronic pain is a prevalent determinant for depression. Changes induced in specific brain regions by sustained pain may alter the processing of affective information, thus resulting in anxiodepressive disorders. Here, we compared the role of the anterior cingulate cortex (ACC) and the posterior insular cortex in the anxiodepressive, sensory, and affective aspects of chronic pain. METHODS Neuropathic pain was induced by cuffing the right sciatic nerve of C57BL/6J mice. Lesions were performed by local injection of ibotenic acid and chronic activation of the ACC by optogenetic stimulation. Anxiodepressive-related behaviors were evaluated through the novelty suppressed feeding, marble burying, splash, and forced swimming tests. Mechanical thresholds were determined using von Frey filaments, and the relief of spontaneous pain was determined by using place conditioning. RESULTS The ACC lesion prevented the anxiodepressive consequences of chronic pain without affecting the sensory mechanical allodynia. Conversely, the tonic or spontaneous pain and the anxiodepressive consequences of pain remained present after posterior insular cortex lesion, even though the mechanical allodynia was suppressed. Furthermore, optogenetic stimulation of the ACC was sufficient to induce anxiety and depressive-like behaviors in naïve animals. CONCLUSIONS Our results show that, at cortical level, the sensory component of chronic pain remains functionally segregated from its affective and anxiodepressive components. Spontaneous tonic pain and evoked allodynia can be experimentally dissociated. Furthermore, the ACC appears as a critical hub for mood disorders, including for the anxiodepressive consequences of chronic pain, and thus constitutes an important target for divulging the underlying mechanism.


The Journal of Pain | 2009

Differentiating Thermal Allodynia and Hyperalgesia Using Dynamic Hot and Cold Plate in Rodents

Ipek Yalcin; Alexandre Charlet; Marie-José Freund-Mercier; Michel Barrot; Pierrick Poisbeau

UNLABELLED In animal studies, thermal sensitivity is mostly evaluated on the basis of nociceptive reaction latencies in response to a given thermal aversive stimulus. However, these techniques may be inappropriate to differentiate allodynia from hyperalgesia or to provide information differentiating the activation of nociceptor subtypes. The recent development of dynamic hot and cold plates, allowing computer-controlled ramps of temperature, may be useful for such measures. In this study, we characterized their interest for studying thermal nociception in freely moving mice and rats. We showed that escape behavior (jumps) was the most appropriate parameter in C57Bl/6J mice, whereas nociceptive response was estimated by using the sum of paw lickings and withdrawals in Sprague-Dawley rats. We then demonstrated that this procedure allows the detection of both thermal allodynia and hyperalgesia after peripheral pain sensitization with capsaicin in mice and in rats. In a condition of carrageenan-induced paw inflammation, we observed the previously described thermal hyperalgesia, but we also revealed that rats exhibit a clear thermal allodynia to a cold or a hot stimulus. These results demonstrate the interest of the dynamic hot and cold plate to study thermal nociception, and more particularly to study both thermal allodynia and hyperalgesia within a single paradigm in awake and freely moving rodents. PERSPECTIVE Despite its clinical relevance, thermal allodynia is rarely studied by researchers working on animal models. As shown after stimulation of capsaicin-sensitive fibers or during inflammatory pain, the dynamic hot and cold plate validated in the present study provides a useful tool to distinguish between thermal allodynia and thermal hyperalgesia in rodents.


Experimental Neurology | 2010

Chronic treatment with agonists of β2-adrenergic receptors in neuropathic pain

Ipek Yalcin; Luc-Henri Tessier; Nathalie Petit-Demoulière; Elisabeth Waltisperger; Lutz Hein; Marie-José Freund-Mercier; Michel Barrot

Expression of beta(2)-adrenoceptors (beta(2)-ARs) within the nociceptive system suggested their potential implication in nociception and pain. Recently, we demonstrated that these receptors are essential for neuropathic pain treatment by antidepressant drugs. The aim of the present study was to investigate whether the stimulation of beta(2)-ARs could in fact be adequate to alleviate neuropathic allodynia. Neuropathy was induced in mice by sciatic nerve cuffing. We demonstrate that chronic but not acute stimulation of beta(2)-ARs with agonists such as clenbuterol, formoterol, metaproterenol and procaterol suppressed neuropathic allodynia. By using a pharmacological approach with the beta(2)-AR antagonist ICI 118,551 or a transgenic approach with mice deficient for beta(2)-ARs, we confirmed that the antiallodynic effect of these agonists was specifically related to their action on beta(2)-ARs. We also showed that chronic treatment with the beta(1)-AR agonist xamoterol or with the beta(3)-AR agonist BRL 37344 had no effect on neuropathic allodynia. Chronic stimulation of beta(2)-ARs, but not beta(1)- or beta(3)-ARs, by specific agonists is thus able to alleviate neuropathic allodynia. This action of beta(2)-AR agonists might implicate the endogenous opioid system; indeed chronic clenbuterol effect can be acutely blocked by the delta-opioid receptor antagonist naltrindole. Present results show that beta(2)-ARs are not only essential for the antiallodynic action of antidepressant drugs on sustained neuropathic pain, but also that the stimulation of these receptors is sufficient to relieve neuropathic allodynia in a murine model. Our data suggest that beta(2)-AR agonists may potentially offer an alternative therapy to antidepressant drugs for the chronic treatment of neuropathic pain.

Collaboration


Dive into the Ipek Yalcin's collaboration.

Top Co-Authors

Avatar

Michel Barrot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malika Benbouzid

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Nada Choucair-Jaafar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Luc-Henri Tessier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Waltisperger

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Salvat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Lutz Hein

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge