Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iqrar Ahmad Khan is active.

Publication


Featured researches published by Iqrar Ahmad Khan.


PLOS ONE | 2013

Genome-Wide Sequence Characterization and Expression Analysis of Major Intrinsic Proteins in Soybean (Glycine max L.)

Da Yong Zhang; Zulfiqar Ali; Chang Biao Wang; Ling Xu; Jin Xin Yi; Zhao Long Xu; Xiao Qing Liu; Xiao Lan He; Yi Hong Huang; Iqrar Ahmad Khan; Richard Trethowan; Hong Xiang Ma

Water is essential for all living organisms. Aquaporin proteins are the major facilitator of water transport activity through cell membranes of plants including soybean. These proteins are diverse in plants and belong to a large major intrinsic (MIP) protein family. In higher plants, MIPs are classified into five subfamilies including plasma membrane intrinsic proteins (PIP), tonoplast intrinsic proteins (TIP), NOD26-like intrinsic proteins (NIP), small basic intrinsic proteins (SIP), and the recently discovered X intrinsic proteins (XIP). This paper reports genome wide assembly of soybean MIPs, their functional prediction and expression analysis. Using a bioinformatic homology search, 66 GmMIPs were identified in the soybean genome. Phylogenetic analysis of amino acid sequences of GmMIPs divided the large and highly similar multi-gene family into 5 subfamilies: GmPIPs, GmTIPs, GmNIPs, GmSIPs and GmXIPs. GmPIPs consisted of 22 genes and GmTIPs 23, which showed high sequence similarity within subfamilies. GmNIPs contained 13 and GmSIPs 6 members which were diverse. In addition, we also identified a two member GmXIP, a distinct 5th subfamily. GmMIPs were further classified into twelve subgroups based on substrate selectivity filter analysis. Expression analyses were performed for a selected set of GmMIPs using semi-quantitative reverse transcription (semi-RT-qPCR) and qPCR. Our results suggested that many GmMIPs have high sequence similarity but diverse roles as evidenced by analysis of sequences and their expression. It can be speculated that GmMIPs contains true aquaporins, glyceroporins, aquaglyceroporins and mixed transport facilitators.


Plant Molecular Biology Reporter | 2004

A modified mini-prep method for economical and rapid extraction of genomic DNA in plants

Iqrar Ahmad Khan; Faisal Saeed Awan; Ashfaq Ahmad; Ahrar Khan

Molecular markers for map-based cloning, marker-assisted selection in crop breeding, and genetic studies require DNA isolation from a large number of plants in a short span of time. Here we describe a modified DNA extraction method that is economical in terms of cost, time and labour. The method allows DNA extraction from as little as 0.2–0.3 g of leaves that are homogenized in zipper plastic bags, followed by DNA isolation in 1.5-mL Eppendorf tubes. By using the modified method, a DNA yield of 700–800 μg/300 mg leaf tissue was obtained from cotton and wheat samples. The quality of the DNA was quite suitable for PCR-based markers.


Genetic Resources and Crop Evolution | 2003

A note about Triticum in Oman

A. Al-Maskri; M. Nagieb; Karl Hammer; A.A. Filatenko; Iqrar Ahmad Khan; Andreas Buerkert

Little is known about the diversity of wheat (Triticum spp.) in Oman. Results of a survey conducted in two remote mountain oases of northern Oman indicate that there exists considerable morphological variation within and among the five traditional landraces of wheat cultivated. Within two of the landraces grown on irrigated terraces, sized between 2 and 100 m2, two new botanical wheat varieties (Triticum aestivum var. baladseetense and var. maqtaense) were identified of which the agronomic properties, in particular tolerance to drought and heat, and the nutritional value require further investigation.


Journal of Zhejiang University-science B | 2012

Extraction of DNA suitable for PCR applications from mature leaves of Mangifera indica L.

Muhammad Abubakkar Azmat; Iqrar Ahmad Khan; H. M. N. Cheema; Ishtiaq Ahmad Rajwana; Ahmad Sattar Khan; Asif Ali Khan

Good quality deoxyribonucleic acid (DNA) is the pre-requisite for its downstream applications. The presence of high concentrations of polysaccharides, polyphenols, proteins, and other secondary metabolites in mango leaves poses problem in getting good quality DNA fit for polymerase chain reaction (PCR) applications. The problem is exacerbated when DNA is extracted from mature mango leaves. A reliable and modified protocol based on the cetyltrimethylammonium bromide (CTAB) method for DNA extraction from mature mango leaves is described here. High concentrations of inert salt were used to remove polysaccharides; Polyvinylpyrrolidone (PVP) and β-mercaptoethanol were employed to manage phenolic compounds. Extended chloroform-isoamyl alcohol treatment followed by RNase treatment yielded 950–1050 μg of good quality DNA, free of protein and RNA. The problems of DNA degradation, contamination, and low yield due to irreversible binding of phenolic compounds and coprecipitation of polysaccharides with DNA were avoided by this method. The DNA isolated by the modified method showed good PCR amplification using simple sequence repeat (SSR) primers. This modified protocol can also be used to extract DNA from other woody plants having similar problems.


Conservation Genetics | 2013

Genetic diversity and population structure of Moringa oleifera

Umbreen Shahzad; M. Awais Khan; Muhammad Jaffar Jaskani; Iqrar Ahmad Khan; Schuyler S. Korban

Moringa is a genus of the tropical flowering plant family Moringaceae containing 13 diverse species. Among the different species, only Moringa oleifera L. is cultivated. This species has great potential in serving as a high-value crop for food, medicinal products, as well as fodder for animals, particularly in developing tropical regions of the world. In this study, the genetic diversity and population structure of world-wide collections of M. oleifera were investigated using DNA markers. A total of 19 microsatellite or simple sequence repeat (SSR) markers along with a partial sequence of the chloroplast gene atpB were used to study genetic diversity within 161 accessions of M. oleifera collected from Asia, Africa, North and South America, and the Caribbean. On average, 8.3 alleles/per SSR were amplified in each accession. A total number of 158 alleles were detected in 131 accessions collected from the wild in Pakistan and from 30 accessions obtained from ECHO (Florida). Observed heterozygosity varied from 0.16 to 0.86, with an average of 0.58, while the average PIC value was 0.59. Partial sequencing of chloroplast genes of 43 of 161 plants generated mixed patterns. These findings have demonstrated that there is a large genetic diversity present in wild collections of M. oleifera collected in Pakistan; whereas low genetic diversity is detected in cultivated accessions obtained from ECHO. Taken together, these results agree with previous reports that M. oleifera is native to the Indo-Pakistan ecological region, and provides sufficient diversity for genetic exploration as well as for genetic improvement efforts.


The Journal of Agricultural Science | 2016

Assessment of Bt cotton genotypes for the Cry1Ac transgene and its expression

H. M. N. Cheema; Asif Ali Khan; M. I. Khan; Usman Aslam; Iqrar Ahmad Rana; Iqrar Ahmad Khan

Genetically modified (GM) plants expressing Bt toxin provide protection against lepidopteran pests. The only GM crop in Pakistan is Bt cotton, which was illegally imported and adopted rapidly by cotton producers. Farmers gained access to the seed of many unapproved Bt genotypes before the matter was picked up and formal approval granted by the relevant governmental agencies. The present study was conducted to evaluate the samples of Bt cotton, collected from farmers and seed dealer, for transgene integration and expression. Seeds of 52 cotton genotypes, labelled as Bt, were collected from various farmers and seed dealers. An immunoblot strip test was carried out, which showed that only 0·86 of the samples collected were synthesizing Cry1Ac toxin. According to multiplexed polymerase chain reaction (PCR) results, 0·86 of the genotypes tested were positive for the Mon531 event (an ‘event’ is a specific genetic modification in a specific species) and 0·14 were negative for any transgene. Transcript analysis of transgenes in positive genotypes by real-time Rt-PCR confirmed the synthesis of mRNA in all genotypes but with significant variation. The concentration of Bt toxin revealed by enzyme linked immunosorbent assay (ELISA) showed that only 0·02 genotypes had the reported optimum level. The real-time PCR and ELISA results further confirmed the attenuation of transgene expression at transcriptional and translational level by various internal and external factors. The same type of event was found in all genotypes, with significant variation in toxin level, revealing the impact of genetic background on transgene expression. The findings support the recommendation to improve the existing quality criteria for transgenic cotton variety approval and certification in Pakistan, with the inclusion of toxin concentration in the list of parameters to be considered.


Journal of Zhejiang University-science B | 2012

Comprehensive screening and selection of okra (Abelmoschus esculentus) germplasm for salinity tolerance at the seedling stage and during plant ontogeny

Ikram-ul Haq; Asif Ali Khan; Iqrar Ahmad Khan; Muhammad Abubakkar Azmat

The okra germplasm was screened for salinity tolerance at the seedling stage and during plant ontogeny. Substantial variation existed in okra for salinity tolerance at the seedling stage. An 80 mmol/L NaCl concentration was suitable for discriminating tolerant and non-tolerant okra genotypes. The pooled ranking of the genotypes, based on individual rankings for each trait (root and shoot length, germination percentage, and relative Na+ and K+) in individual NaCl concentrations, was effective for selecting tolerant genotypes. Genotypes selected at the seedling stage maintained their tolerance to NaCl during plant ontogeny, suggesting that screening of the germplasm entries and advanced breeding materials for salt tolerance at the seedling stage is effective. Among 39 okra genotypes, five were identified as the most tolerant genotypes and showed potential for use in breeding programs that focus on the development of salt-tolerant, high-yield okra cultivars.


Genetics and Molecular Research | 2012

Establishment of an in vitro regeneration system for genetic transformation of selected sugarcane genotypes.

Ijaz S; Rana Ia; Iqrar Ahmad Khan; Saleem M

A good culture system provides considerable quantities of highly regenerable target tissues. Embryogenic callus cultures are ideal for micro-projectile-mediated transformation, because regenerable cells are not very stable. Effective exploitation of genetic transformation requires good regeneration systems. We selected three sugarcane genotypes for the establishment and optimization of good in vitro regeneration systems, viz., S-2003-us-359, S-2006-sp-30, and S-2003-us-165. Three callus induction media were investigated. These media were composed of Murashige and Skoog (MS) medium salt plus 1, 2, and 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D). Medium with 3 mg/L 2,4-D gave the greatest mass of embryogenic calli. The calli produced on the three callus induction media were transferred to 18 types of regeneration media (RM1-RM18). They varied with respect to plant growth regulators and sucrose levels but the basal medium was MS. Two levels of sucrose (30 and 40 g/L), three levels of 2,4-D (0.1, 0.25, 0.5 mg/L) and three levels of 6-benzylaminopurine (0, 0.25 and 0.5 mg/L) were studied in the regeneration media. The effects of callus age on regeneration were evaluated by transferring the calli to regeneration media after 15, 21, 28, and 35 days of culture. The 21-day-old callus of the genotype S-2003-us-359 on RM3 yielded the largest number of plants and was selected as the best for transformation. Six RAPD DNA primers were used to check genetic stability; this medium did not affect the sugarcane genomes.


Journal of Plant Physiology | 2017

Genome and transcriptome-wide analyses of cellulose synthase gene superfamily in soybean.

Muhammad Amjad Nawaz; Hafiz Mamoon Rehman; Faheem Shehzad Baloch; Babar Ijaz; Muhammad Amjad Ali; Iqrar Ahmad Khan; Jeong Dong Lee; Gyuhwa Chung; Seung Hwan Yang

The plant cellulose synthase gene superfamily belongs to the category of type-2 glycosyltransferases, and is involved in cellulose and hemicellulose biosynthesis. These enzymes are vital for maintaining cell-wall structural integrity throughout plant life. Here, we identified 78 putative cellulose synthases (CS) in the soybean genome. Phylogenetic analysis against 40 reference Arabidopsis CS genes clustered soybean CSs into seven major groups (CESA, CSL A, B, C, D, E and G), located on 19 chromosomes (except chromosome 18). Soybean CS expansion occurred in 66 duplication events. Additionally, we identified 95 simple sequence repeat makers related to 44 CSs. We next performed digital expression analysis using publically available datasets to understand potential CS functions in soybean. We found that CSs were highly expressed during soybean seed development, a pattern confirmed with an Affymatrix soybean IVT array and validated with RNA-seq profiles. Within CS groups, CESAs had higher relative expression than CSLs. Soybean CS models were designed based on maximum average RPKM values. Gene co-expression networks were developed to explore which CSs could work together in soybean. Finally, RT-PCR analysis confirmed the expression of 15 selected CSs during all four seed developmental stages.


Genetics and Molecular Research | 2012

Development of a species-specific sequence-characterized amplified region marker for roses.

Riaz S; Bushra Sadia; Faisal Saeed Awan; Iqrar Ahmad Khan; Hafeez Ahmad Sadaqat

DNA fingerprints of four rose species, Rosa centifolia, R. Gruss-an-Teplitz, R. bourboniana, and R. damascena, were developed using RAPD-PCR. We identified a unique polymorphic band in R. centifolia. This 762-bp fragment was produced by the random primer GLI-2. The fragment was eluted and directly cloned in a TA cloning vector, pTZ57R/T. Digestion of the plasmid with EcoRI confirmed the cloning of GLI-2(762) in pTZ57R/T. A second enzyme, PstI, used in combination with EcoRI, gave complete digestion of the plasmid, and the 762-bp fragment was confirmed on the gel. Subsequently, the polymorphic amplicon was sequenced with an AB1 373 DNA sequencer system using the PRISM(TM) Ready Reaction DyeDeoxy(TM) Terminator Cycle Sequencing kit. After sequencing, specific primers (23 bp long) were designed based on the sequence of the flanking regions of the original RAPD fragment. These primers will effectively allow fingerprinting for the identification of R. centifolia species. In essence, we developed an SCAR marker to authenticate the identity of R. centifolia species and to distinguish it from its substitutes. Such techniques are required not only to complement conventional parameters in creating the passport data of commercial and medicinal products of rose, but also for routine quality control in commercial and government rosaries and rose nurseries.

Collaboration


Dive into the Iqrar Ahmad Khan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asif Ali Khan

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

B. Fatima

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

M. M. Khan

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Bushra Sadia

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Muhammad Usman

University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge