Ira Assent
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ira Assent.
Knowledge and Information Systems | 2011
Philipp Kranen; Ira Assent; Corinna Baldauf; Thomas Seidl
Clustering streaming data requires algorithms that are capable of updating clustering results for the incoming data. As data is constantly arriving, time for processing is limited. Clustering has to be performed in a single pass over the incoming data and within the possibly varying inter-arrival times of the stream. Likewise, memory is limited, making it impossible to store all data. For clustering, we are faced with the challenge of maintaining a current result that can be presented to the user at any given time. In this work, we propose a parameter-free algorithm that automatically adapts to the speed of the data stream. It makes best use of the time available under the current constraints to provide a clustering of the objects seen up to that point. Our approach incorporates the age of the objects to reflect the greater importance of more recent data. For efficient and effective handling, we introduce the ClusTree, a compact and self-adaptive index structure for maintaining stream summaries. Additionally we present solutions to handle very fast streams through aggregation mechanisms and propose novel descent strategies that improve the clustering result on slower streams as long as time permits. Our experiments show that our approach is capable of handling a multitude of different stream characteristics for accurate and scalable anytime stream clustering.
international conference on data mining | 2007
Ira Assent; Ralph Krieger; Emmanuel Müller; Thomas Seidl
To gain insight into todays large data resources, data mining provides automatic aggregation techniques. Clustering aims at grouping data such that objects within groups are similar while objects in different groups are dissimilar. In scenarios with many attributes or with noise, clusters are often hidden in subspaces of the data and do not show up in the full dimensional space. For these applications, subspace clustering methods aim at detecting clusters in any sub- space. Existing subspace clustering approaches fall prey to an effect we call dimensionality bias. As dimensionality of subspaces varies, approaches which do not take this effect into account fail to separate clusters from noise. We give a formal definition of dimensionality bias and analyze consequences for subspace clustering. A dimensionality unbiased subspace clustering (DUSC) definition based on statistical foundations is proposed. In thorough experiments on synthetic and real world data, we show that our approach outperforms existing subspace clustering algorithms.
data and knowledge engineering | 2007
Mohammed Javeed Zaki; Markus Peters; Ira Assent; Thomas Seidl
We present a novel algorithm called Clicks, that finds clusters in categorical datasets based on a search for k-partite maximal cliques. Unlike previous methods, Clicks mines subspace clusters. It uses a selective vertical method to guarantee complete search. Clicks outperforms previous approaches by over an order of magnitude and scales better than any of the existing method for high-dimensional datasets. These results are demonstrated in a comprehensive performance study on real and synthetic datasets.
international conference on data mining | 2008
Ira Assent; Ralph Krieger; Emmanuel Müller; Thomas Seidl
Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of projections is exponential in the number of dimensions, efficiency is crucial. Moreover, the resulting subspace clusters are often highly redundant, i.e. many clusters are detected multiply in several projections. We propose a novel index for efficient subspace clustering in a novel depth-first processing with in-process-removal of redundant clusters for better pruning. Thorough experiments on real and synthetic data show that INSCY yields substantial efficiency and quality improvements.
international conference on data mining | 2009
Emmanuel Müller; Ira Assent; Stephan Günnemann; Ralph Krieger; Thomas Seidl
Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters. We prove that computation of this model is NP-hard. For RESCU, we propose an approximative solution that shows high accuracy with respect to our relevance model. Thorough experiments on synthetic and real world data show that RESCU successfully reduces the result to manageable sizes. It reliably achieves top clustering quality while competing approaches show greatly varying performance.
extending database technology | 2008
Ira Assent; Ralph Krieger; Farzad Afschari; Thomas Seidl
Continuous growth in sensor data and other temporal data increases the importance of retrieval and similarity search in time series data. Efficient time series query processing is crucial for interactive applications. Existing multidimensional indexes like the R-tree provide efficient querying for only relatively few dimensions. Time series are typically long which corresponds to extremely high dimensional data in multidimensional indexes. Due to massive overlap of index descriptors, multidimensional indexes degenerate for high dimensions and access the entire data by random I/O. Consequently, the efficiency benefits of indexing are lost. In this paper, we propose the TS-tree (time series tree), an index structure for efficient time series retrieval and similarity search. Exploiting inherent properties of time series quantization and dimensionality reduction, the TS-tree indexes high-dimensional data in an overlap-free manner. During query processing, powerful pruning via quantized separator and meta data information greatly reduces the number of pages which have to be accessed, resulting in substantial speed-up. In thorough experiments on synthetic and real world time series data we demonstrate that our TS-tree outperforms existing approaches like the R*-tree or the quantized A-tree.
international conference on data engineering | 2006
Ira Assent; Andrea Wenning; Thomas Seidl
Todays abundance of storage coupled with digital technologies in virtually any scientific or commercial application such as medical and biological imaging or music archives deal with tremendous quantities of images, videos or audio files stored in large multimedia databases. For content-based data mining and retrieval purposes suitable similarity models are crucial. The Earth Mover’s Distance was introduced in Computer Vision to better approach human perceptual similarities. Its computation, however, is too complex for usage in interactive multimedia database scenarios. In order to enable efficient query processing in large databases, we propose an index-supported multistep algorithm. We therefore develop new lower bounding approximation techniques for the Earth Mover’s Distance which satisfy high quality criteria including completeness (no false drops), index-suitability and fast computation. We demonstrate the efficiency of our approach in extensive experiments on large image databases
Data Mining and Knowledge Discovery | 2016
Guilherme Oliveira Campos; Arthur Zimek; Jörg Sander; Ricardo J. G. B. Campello; Barbora Micenková; Erich Schubert; Ira Assent; Michael E. Houle
The evaluation of unsupervised outlier detection algorithms is a constant challenge in data mining research. Little is known regarding the strengths and weaknesses of different standard outlier detection models, and the impact of parameter choices for these algorithms. The scarcity of appropriate benchmark datasets with ground truth annotation is a significant impediment to the evaluation of outlier methods. Even when labeled datasets are available, their suitability for the outlier detection task is typically unknown. Furthermore, the biases of commonly-used evaluation measures are not fully understood. It is thus difficult to ascertain the extent to which newly-proposed outlier detection methods improve over established methods. In this paper, we perform an extensive experimental study on the performance of a representative set of standard k nearest neighborhood-based methods for unsupervised outlier detection, across a wide variety of datasets prepared for this purpose. Based on the overall performance of the outlier detection methods, we provide a characterization of the datasets themselves, and discuss their suitability as outlier detection benchmark sets. We also examine the most commonly-used measures for comparing the performance of different methods, and suggest adaptations that are more suitable for the evaluation of outlier detection results.
IEEE Transactions on Knowledge and Data Engineering | 2012
Man Lung Yiu; Ira Assent; Christian S. Jensen; Panos Kalnis
This paper considers a cloud computing setting in which similarity querying of metric data is outsourced to a service provider. The data is to be revealed only to trusted users, not to the service provider or anyone else. Users query the server for the most similar data objects to a query example. Outsourcing offers the data owner scalability and a low-initial investment. The need for privacy may be due to the data being sensitive (e.g., in medicine), valuable (e.g., in astronomy), or otherwise confidential. Given this setting, the paper presents techniques that transform the data prior to supplying it to the service provider for similarity queries on the transformed data. Our techniques provide interesting trade-offs between query cost and accuracy. They are then further extended to offer an intuitive privacy guarantee. Empirical studies with real data demonstrate that the techniques are capable of offering privacy while enabling efficient and accurate processing of similarity queries.
international conference on data mining | 2009
Philipp Kranen; Ira Assent; Corinna Baldauf; Thomas Seidl
Clustering streaming data requires algorithms which are capable of updating clustering results for the incoming data. As data is constantly arriving, time for processing is limited. Clustering has to be performed in a single pass over the incoming data and within the possibly varying inter-arrival times of the stream. Likewise, memory is limited, making it impossible to store all data. For clustering, we are faced with the challenge of maintaining a current result that can be presented to the user at any given time. In this work, we propose a parameter free algorithm that automatically adapts to the speed of the data stream. It makes best use of the time available under the current constraints to provide a clustering of the objects seen up to that point. Our approach incorporates the age of the objects to reflect the greater importance of more recent data. Moreover, we are capable of detecting concept drift, novelty and outliers in the stream. For efficient and effective handling, we introduce the ClusTree, a compact and self-adaptive index structure for maintaining stream summaries. Our experiments show that our approach is capable of handling a multitude of different stream characteristics for accurate and scalable anytime stream clustering.