Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irena Audzeyenka is active.

Publication


Featured researches published by Irena Audzeyenka.


Journal of Cellular Biochemistry | 2011

High glucose concentration affects the oxidant‐antioxidant balance in cultured mouse podocytes

Agnieszka Piwkowska; Dorota Rogacka; Irena Audzeyenka; Maciej Jankowski; Stefan Angielski

Hyperglycemia is well‐recognized and has long‐term complications in diabetes mellitus and diabetic nephropathy. In podocytes, the main component of the glomerular barrier, overproduction of reactive oxygen species (ROS) in the presence of high glucose induces dysfunction and increases excretion of albumin in urine. This suggests an impaired antioxidant defense system has a role in the pathogenesis of diabetic nephropathy. We studied expression of NAD(P)H oxidase subunits by Western blotting and immunofluorescence and the activities of the oxidant enzyme, NAD(P)H, and antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), in mouse podocytes cultured in a high glucose concentration (30 mM). We found long‐term (3 and 5 days) exposure of mouse podocytes to high glucose concentrations caused oxidative stress, as evidenced by increased expression of Nox4 and activities of NAD(P)H oxidase (Δ 182%) and SOD (Δ 39%) and decreased activities of GPx (Δ −40%) and CAT (Δ −35%). These biochemical changes were accompanied by a rise in intracellular ROS production and accumulation of hydrogen peroxide in extracellular space. The role of Nox4 in ROS generation was confirmed with Nox4 siRNA. In conclusion, high glucose concentration affects the oxidant–antioxidant balance in mouse podocytes, resulting in enhanced generation of superoxide anions and its attenuated metabolism. These observations suggest free radicals may play an important role in the pathogenesis of diabetic nephropathy. J. Cell. Biochem. 112: 1661–1672, 2011.


The International Journal of Biochemistry & Cell Biology | 2014

Involvement of the AMPK–PTEN pathway in insulin resistance induced by high glucose in cultured rat podocytes

Dorota Rogacka; Agnieszka Piwkowska; Irena Audzeyenka; Stefan Angielski; Maciej Jankowski

As part of the filtration barrier, podocytes play an important role in the development of diabetic nephropathy. Disturbances in insulin signaling accompanied by insulin resistance can lead to various intracellular events. We hypothesized that high glucose concentrations would lead to disturbances in interactions between AMPK and PTEN proteins in podocytes. Experiments were performed in primary rat podocytes cultured with normal (5.6mM) or high (30mM) glucose concentrations for 5d. Immunodetection methods were used to detect AMPK, PTEN, insulin receptor, and Akt proteins, and their phosphorylated forms. Insulin-stimulated changes in glucose uptake were used to detect insulin resistance. Isoforms of AMPK were detected by RT-PCR. AMPK and PTEN activities were modified by metformin, Compound C, siRNA for AMPK isoforms α1 and α2 and siRNA for PTEN, respectively. We found that impairment of insulin induction of glucose uptake into podocytes cultivated in the presence of high glucose concentrations for long periods of time is associated with increased PTEN levels in an AMPK-dependent manner.


Experimental Cell Research | 2014

High glucose increases glomerular filtration barrier permeability by activating protein kinase G type Iα subunits in a Nox4-dependent manner

Agnieszka Piwkowska; Dorota Rogacka; Irena Audzeyenka; Stefan Angielski; Maciej Jankowski

Hyperglycemia is a primary factor that disturbs podocyte function in the glomerular filtration process; this disturbance leads to the development of diabetic nephropathy, and ultimately, renal failure. Podocyte function may also be altered by biological agents that modify protein kinase activity, including the cGMP-activated protein kinase type Iα (PKGIα). We hypothesized that hyperglycemia-induced podocyte protein hyperpermeability was dependent on PKGIα activation, and that PKGIα was activated via dimerization induced by reactive oxygen species. This hypothesis was investigated in rat podocytes cultured in high glucose (HG, 30 mM). Protein expression was measured with Western blot and immunofluorescence. Podocyte permeability was measured with a transmembrane albumin flux assay. We found that HG increased podocyte permeability in long-term incubations (1, 3, and 5 days); permeability was increased by 66% on day 5. This effect was abolished with apocynin, a NAD(P)H inhibitor, and Rp-8-Br-cGMPS, a PKG inhibitor. It was also abolished by introducing small interfering RNAs (siRNAs) against Nox4 and PKGIα into cultured podocytes. Furthermore, HG increased PKGIα dimerization by 138% (0.23 ± 0.04 vs. 0.54 ± 0.09; P<0.05); this effect was abolished with a siRNA against Nox4. Our observations suggested that HG could increase albumin permeability across the podocyte filtration barrier via Nox4-dependent PKGIα dimerization.


Biochimica et Biophysica Acta | 2015

Insulin increases glomerular filtration barrier permeability through PKGIα-dependent mobilization of BKCa channels in cultured rat podocytes

Agnieszka Piwkowska; Dorota Rogacka; Irena Audzeyenka; Malgorzata Kasztan; Stefan Angielski; Maciej Jankowski

Podocytes are highly specialized cells that wrap around glomerular capillaries and comprise a key component of the glomerular filtration barrier. They are uniquely sensitive to insulin; like skeletal muscle and fat cells, they exhibit insulin-stimulated glucose uptake and express glucose transporters. Podocyte insulin signaling is mediated by protein kinase G type I (PKGI), and it leads to changes in glomerular permeability to albumin. Here, we investigated whether large-conductance Ca²⁺-activated K⁺ channels (BKCa) were involved in insulin-mediated, PKGIα-dependent filtration barrier permeability. Insulin-induced glomerular permeability was measured in glomeruli isolated from Wistar rats. Transepithelial albumin flux was measured in cultured rat podocyte monolayers. Expression of BKCa subunits was detected by RT-PCR. BKCa, PKGIα, and upstream protein expression were examined in podocytes with Western blotting and immunofluorescence. The BKCa-PKGIα interaction was assessed with co-immunoprecipitation. RT-PCR showed that primary cultured rat podocytes expressed mRNAs that encoded the pore-forming α subunit and four accessory β subunits of BKCa. The BKCa inhibitor, iberiotoxin (ibTX), abolished insulin-dependent glomerular albumin permeability and PKGI-dependent transepithelial albumin flux. Insulin-evoked albumin permeability across podocyte monolayers was also blocked with BKCa siRNA. Moreover, ibTX blocked insulin-induced disruption of the actin cytoskeleton and changes in the phosphorylation of PKG target proteins, MYPT1 and RhoA. These results indicated that insulin increased filtration barrier permeability through mobilization of BKCa channels via PKGI in cultured rat podocytes. This molecular mechanism may explain podocyte injury and proteinuria in diabetes.


American Journal of Physiology-renal Physiology | 2016

Extracellular purines' action on glomerular albumin permeability in isolated rat glomeruli: insights into the pathogenesis of albuminuria

Malgorzata Kasztan; Agnieszka Piwkowska; Ewelina Kreft; Dorota Rogacka; Irena Audzeyenka; Miroslawa Szczepanska-Konkel; Maciej Jankowski

Purinoceptors (adrengeric receptors and P2 receptors) are expressed on the cellular components of the glomerular filtration barrier, and their activation may affect glomerular permeability to albumin, which may ultimately lead to albuminuria, a well-established risk factor for the progression of chronic kidney disease and development of cardiovascular diseases. We investigated the mechanisms underlying the in vitro and in vivo purinergic actions on glomerular filter permeability to albumin by measuring convectional albumin permeability (Palb) in a single isolated rat glomerulus based on the video microscopy method. Primary cultured rat podocytes were used for the analysis of Palb, cGMP accumulation, PKG-Iα dimerization, and immunofluorescence. In vitro, natural nucleotides (ATP, ADP, UTP, and UDP) and nonmetabolized ATP analogs (2-meSATP and ATP-γ-S) increased Palb in a time- and concentration-dependent manner. The effects were dependent on P2 receptor activation, nitric oxide synthase, and cytoplasmic guanylate cyclase. ATP analogs significantly increased Palb, cGMP accumulation, and subcortical actin reorganization in a PKG-dependent but nondimer-mediated route in cultured podocytes. In vivo, 2-meSATP and ATP-γ-S increased Palb but did not significantly affect urinary albumin excretion. Both agonists enhanced the clathrin-mediated endocytosis of albumin in podocytes. A product of adenine nucleotides hydrolysis, adenosine, increased the permeability of the glomerular barrier via adrenergic receptors in a dependent and independent manner. Our results suggest that the extracellular nucleotides that stimulate an increase of glomerular Palb involve nitric oxide synthase and cytoplasmic guanylate cyclase with actin reorganization in podocytes.


The International Journal of Biochemistry & Cell Biology | 2016

Reactive oxygen species are involved in insulin-dependent regulation of autophagy in primary rat podocytes

Irena Audzeyenka; Dorota Rogacka; Agnieszka Piwkowska; Michał Rychłowski; Joanna Beata Bierla; Elżbieta Czarnowska; Stefan Angielski; Maciej Jankowski

Autophagy is an intracellular defense mechanism responsible for the turnover of damaged or non-functional cellular constituents. This process provides cells with energy and essential compounds under unfavorable environmental conditions-such as oxidative stress and hyperglycemia, which are both observed in diabetes. The most common diabetes complication is diabetic nephropathy (DN), which can lead to renal failure. This condition often includes impaired podocyte function. Here we investigated autophagic activity in rat podocytes cultured with a high insulin concentration (300nM). Autophagy was activated after 60min of insulin stimulation. Moreover, this effect was abolished following pharmacological (apocynin) or genetic (siRNA) inhibition of NAD(P)H oxidase activity, indicating that insulin-dependent autophagy stimulation involved reactive oxygen species (ROS). We also observed a continuous and time-dependent increase of podocyte albumin permeability in response to insulin, and this process was slightly improved by autophagy inhibition following short-term insulin exposure. Our results suggest that insulin may be a factor affecting the development of diabetic nephropathy.


Experimental Cell Research | 2016

SIRT1-AMPK crosstalk is involved in high glucose-dependent impairment of insulin responsiveness in primary rat podocytes.

Dorota Rogacka; Agnieszka Piwkowska; Irena Audzeyenka; Stefan Angielski; Maciej Jankowski

Growing evidence indicates that in diabetes, high glucose concentrations affect podocyte metabolism and function. The crucial pathological feature of type 2 diabetes mellitus and metabolic syndrome is insulin resistance, often developed as a result of dysregulation of nutrient-responsible systems and disturbance of cellular homeostasis under diabetic conditions. Here, we report the involvement of the reciprocal interplay between deacetylase SIRT1 and protein kinase AMPK in podocyte high glucose-induced abolition of insulin-dependent glucose uptake, manifesting insulin resistance. Experiments were performed on primary rat podocytes cultured in standard or high glucose conditions. Immunodetection methods were used to determine SIRT1 protein level and AMPK phosphorylation degree. Insulin-stimulated changes in glucose uptake were used to determine podocyte responsiveness to insulin. SIRT1 activity was modulated by resveratrol, EX-527, or small interfering RNA targeting SIRT1. We have demonstrated that the absence of the stimulating effect of insulin on glucose uptake into primary rat podocytes after long-time exposition to high glucose concentrations, is a result of decreased SIRT1 protein levels and activity, associated with decreased AMPK phosphorylation degree, presumably underlying the induction of insulin resistance. Our findings suggest that the interplay between SIRT1 and AMPK is involved in the regulation of insulin action in podocytes.


Biochimica et Biophysica Acta | 2018

Metformin overcomes high glucose-induced insulin resistance of podocytes by pleiotropic effects on SIRT1 and AMPK

Dorota Rogacka; Irena Audzeyenka; Michał Rychłowski; Patrycja Rachubik; Maria Szrejder; Stefan Angielski; Agnieszka Piwkowska

Podocyte insulin sensitivity is critical for glomerular function, and the loss of appropriate insulin signaling leads to alterations and disorders featuring diabetic nephropathy. Energy-sensing pathways, such as AMP-dependent protein kinase (AMPK) and protein deacetylase SIRT1, have been shown to play an important role in insulin resistance. The absence of a stimulating effect of insulin on glucose uptake into podocytes after exposure to hyperglycemic conditions has been demonstrated to be related to a decreased level and activity of SIRT1 protein, leading to reduced AMPK phosphorylation. The present work was undertaken to investigate metformins ability to restore the insulin responsiveness of podocytes by regulating SIRT1 and AMPK activities. Primary rat podocytes cultured with standard or high glucose concentrations for 5days were transfected with siRNAs targeting SIRT1, AMPKα1, or AMPKα2. SIRT1 activity was measured by a fluorometric method. Insulin-stimulated changes in glucose uptake were used to detect insulin resistance. Podocyte permeability was measured by a transmembrane albumin flux assay to examine podocytes functioning. Our results demonstrated that metformin activated SIRT1 and AMPK, prevented hyperglycemia-induced reduction of SIRT1 protein levels, ameliorated glucose uptake into podocytes, and decreased glomerular filtration barrier permeability. Furthermore, metformin activated AMPK in a SIRT1-independent manner, as the increase in AMPK phosphorylation after metformin treatment was not affected by SIRT1 downregulation. Therefore, the potentiating effect of metformin on insulin-resistant podocytes seemed to be dependent on AMPK, as well as SIRT1 activity, establishing multilateral effects of metformin action.


Biochimica et Biophysica Acta | 2017

Insulin increases filtration barrier permeability via TRPC6-dependent activation of PKGIα signaling pathways

Dorota Rogacka; Irena Audzeyenka; Patrycja Rachubik; Michał Rychłowski; Malgorzata Kasztan; Maciej Jankowski; Stefan Angielski; Agnieszka Piwkowska

Podocytes are dynamic polarized cells on the surface of glomerular capillaries and an essential component of the glomerular filtration barrier. Insulin increases the activation of protein kinase G type Iα (PKGIα) subunits, leading to podocyte dysfunction. In addition, accumulating evidence suggests that TRPC6 channels are crucial mediators of podocyte calcium handling and involved in the regulation of glomerular filtration. Therefore, we investigated whether TRPC6 is involved in the regulation of filtration barrier permeability by insulin via the PKGIα-dependent manner. TRPC channel inhibitor SKF96365 abolished insulin-dependent glomerular albumin permeability and transepithelial albumin flux in cultured rat podocytes. Insulin-evoked albumin permeability across podocyte monolayers was also blocked using TRPC6 siRNA. The effect of insulin on albumin permeability was mimicked by treating podocytes with TRPC channel activator (oleolyl-2-acetyl-sn-glycerol, OAG). Insulin or OAG treatment rapidly increased the superoxide generation through activation of NADH oxidase. TRPC inhibitor SKF96365 or siRNA knockdown of TRPC6 attenuated insulin-dependent increase of ROS production. Furthermore, TRPC inhibitor or downregulation of TRPC6 blocked insulin-induced rearrangement of the actin cytoskeleton and attenuated oxidative activation of PKGIα and changes in the phosphorylation of PKG target proteins MYPT1 and MLC. Moreover insulin regulated the PKGIα interaction with TRPC6 in cultured rat podocytes. Taken together, our data suggest a key role of TRPC6 channels in the mediation of insulin-dependent activation of PKGIα signaling pathways. Overall, we have identified a potentially important mechanism that may explain disturbances in filtration barrier permeability in many diseases with increased expression of TRPC6 and chronic Ca2+ overload.


FEBS Letters | 2016

Intracellular calcium signaling regulates glomerular filtration barrier permeability: the role of the PKGIα‐dependent pathway

Agnieszka Piwkowska; Dorota Rogacka; Irena Audzeyenka; Malgorzata Kasztan; Stefan Angielski; Maciej Jankowski

Podocytes are dynamic polarized cells that lie on the surface of glomerular capillaries and comprise an essential component of the glomerular filtration barrier. Insulin provoked a sustained, approximately 70%, increase in intracellular calcium concentration in podocytes. RT‐PCR revealed the presence of mRNA encoding sarco/endoplasmic reticulum calcium ATPase isoforms 1–3, and plasma membrane Ca2+ pump (PMCA) isoforms 1,3,4; mRNA levels were depressed by the addition of insulin. Inhibitors of PMCA, and the Na+‐Ca2+exchanger, increased podocyte permeability to albumin, induced dimerization of protein kinase G type I alpha (PKGIα), and activation of PKGIα‐dependent signaling. These data suggest the involvement of calcium and PKGIα signaling in insulin‐enhanced filtration barrier permeability in podocytes.

Collaboration


Dive into the Irena Audzeyenka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorota Rogacka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Stefan Angielski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Malgorzata Kasztan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Patrycja Rachubik

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Maria Szrejder

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge