Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irena Levitan is active.

Publication


Featured researches published by Irena Levitan.


Antioxidants & Redox Signaling | 2010

Oxidized LDL: Diversity, Patterns of Recognition, and Pathophysiology

Irena Levitan; Suncica Volkov; Papasani V. Subbaiah

Oxidative modification of LDL is known to elicit an array of pro-atherogenic responses, but it is generally underappreciated that oxidized LDL (OxLDL) exists in multiple forms, characterized by different degrees of oxidation and different mixtures of bioactive components. The variable effects of OxLDL reported in the literature can be attributed in large part to the heterogeneous nature of the preparations employed. In this review, we first describe the various subclasses and molecular composition of OxLDL, including the variety of minimally modified LDL preparations. We then describe multiple receptors that recognize various species of OxLDL and discuss the mechanisms responsible for the recognition by specific receptors. Furthermore, we discuss the contentious issues such as the nature of OxLDL in vivo and the physiological oxidizing agents, whether oxidation of LDL is a prerequisite for atherogenesis, whether OxLDL is the major source of lipids in foam cells, whether in some cases it actually induces cholesterol depletion, and finally the Janus-like nature of OxLDL in having both pro- and anti-inflammatory effects. Lastly, we extend our review to discuss the role of LDL oxidation in diseases other than atherosclerosis, including diabetes mellitus, and several autoimmune diseases, such as lupus erythematosus, anti-phospholipid syndrome, and rheumatoid arthritis.


Journal of Cell Science | 2007

The effect of cellular cholesterol on membrane-cytoskeleton adhesion.

Mingzhai Sun; Nathan Northup; Francoise Marga; Tamás Huber; Fitzroy J. Byfield; Irena Levitan; Gabor Forgacs

Whereas recent studies suggest that cholesterol plays important role in the regulation of membrane proteins, its effect on the interaction of the cell membrane with the underlying cytoskeleton is not well understood. Here, we investigated this by measuring the forces needed to extract nanotubes (tethers) from the plasma membrane, using atomic force microscopy. The magnitude of these forces provided a direct measure of cell stiffness, cell membrane effective surface viscosity and association with the underlying cytoskeleton. Furthermore, we measured the lateral diffusion constant of a lipid analog DiIC12, using fluorescence recovery after photobleaching, which offers additional information on the organization of the membrane. We found that cholesterol depletion significantly increased the adhesion energy between the membrane and the cytoskeleton and decreased the membrane diffusion constant. An increase in cellular cholesterol to a level higher than that in control cells led to a decrease in the adhesion energy and the membrane surface viscosity. Disassembly of the actin network abrogated all the observed effects, suggesting that cholesterol affects the mechanical properties of a cell through the underlying cytoskeleton. The results of these quantitative studies may help to better understand the biomechanical processes accompanying the development of atherosclerosis.


Journal of Biomechanics | 2009

Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D

Fitzroy J. Byfield; Rashmeet K. Reen; Tzu Pin Shentu; Irena Levitan; Keith J. Gooch

There is a growing appreciation of the profound effects that passive mechanical properties, especially the stiffness of the local environment, can have on cellular functions. Many experiments are conducted in a 2D geometry (i.e., cells grown on top of substrates of varying stiffness), which is a simplification of the 3D environment often experienced by cells in vivo. To determine how matrix dimensionality might modulate the effect of matrix stiffness on actin and cell stiffness, endothelial cells were cultured on top of and within substrates of various stiffnesses. Endothelial cells were cultured within compliant (1.0-1.5mg/ml, 124+/-8 to 202+/-27Pa) and stiff (3.0mg/ml, 502+/-48Pa) type-I collagen gels. Cells elongated and formed microvascular-like networks in both sets of gels as seen in previous studies. Cells in stiffer gels exhibited more pronounced stress fibers and approximately 1.5-fold greater staining for actin. As actin is a major determinant of a cells mechanical properties, we hypothesized that cells in stiff gels will themselves be stiffer. To test this hypothesis, cells were isolated from the gels and their stiffness was assessed using micropipette aspiration. Cells isolated from relatively compliant gels were 1.9-fold more compliant than cells isolated from relatively stiff gels (p<0.05). Similarly, cells cultured on top of 1700Pa polyacrylamide gels were 2.0-fold more compliant that those cultured on 9000Pa (p<0.05). These data demonstrate that extracellular substrate stiffness regulates endothelial stiffness in both three- and two-dimensional environments, though the range of stiffnesses that cells respond to vary significantly in different environments.


Sub-cellular biochemistry | 2010

Cholesterol and Ion Channels

Irena Levitan; Yun Fang; Avia Rosenhouse-Dantsker; Victor G. Romanenko

A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.


American Journal of Physiology-heart and Circulatory Physiology | 2012

New mechanisms of pulmonary arterial hypertension: role of Ca2+ signaling

Frank Kuhr; Kimberly A. Smith; Michael Y. Song; Irena Levitan; Jason X.-J. Yuan

Pulmonary arterial hypertension (PAH) is a severe and progressive disease that usually culminates in right heart failure and death if left untreated. Although there have been substantial improvements in our understanding and significant advances in the management of this disease, there is a grim prognosis for patients in the advanced stages of PAH. A major cause of PAH is increased pulmonary vascular resistance, which results from sustained vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness. In addition to other signal transduction pathways, Ca(2+) signaling in pulmonary artery smooth muscle cells (PASMCs) plays a central role in the development and progression of PAH because of its involvement in both vasoconstriction, through its pivotal effect of PASMC contraction, and vascular remodeling, through its stimulatory effect on PASMC proliferation. Altered expression, function, and regulation of ion channels and transporters in PASMCs contribute to an increased cytosolic Ca(2+) concentration and enhanced Ca(2+) signaling in patients with PAH. This review will focus on the potential pathogenic role of Ca(2+) mobilization, regulation, and signaling in the development and progression of PAH.


Journal of Lipid Research | 2006

OxLDL increases endothelial stiffness, force generation, and network formation

Fitzroy J. Byfield; Saloni Tikku; George H. Rothblat; Keith J. Gooch; Irena Levitan

This study investigates the effect of oxidatively modified low density lipoprotein (OxLDL) on the biomechanical properties of human aortic endothelial cells (HAECs). We show that treatment with OxLDL results in a 90% decrease in the membrane deformability of HAECs, as determined by micropipette aspiration. Furthermore, aortic endothelial cells freshly isolated from hypercholesterolemic pigs were significantly stiffer than cells isolated from healthy animals. Interestingly, OxLDL had no effect on membrane cholesterol of HAECs but caused the disappearance of a lipid raft marker, GM1, from the plasma membrane. Both an increase in membrane stiffness and a disappearance of GM1 were also observed in cells that were cholesterol-depleted by methyl-β-cyclodextrin. Additionally, OxLDL treatment of HAECs embedded within collagen gels resulted in increased gel contraction, indicating an increase in force generation by the cells. This increase in force generation correlated with an increased ability of HAECs to elongate and form networks in a three-dimensional environment. Increased force generation, elongation, and network formation were also observed in cholesterol-depleted cells. We suggest, therefore, that exposure to OxLDL results in the disruption or redistribution of lipid rafts, which in turn induces stiffening of the endothelium, an increase in endothelial force generation, and the potential for network formation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol

Yulia Epshtein; Arun Chopra; Avia Rosenhouse-Dantsker; Gregory B. Kowalsky; Diomedes E. Logothetis; Irena Levitan

A variety of ion channels are regulated by cholesterol, a major lipid component of the plasma membrane whose excess is associated with multiple pathological conditions. However, the mechanism underlying cholesterol sensitivity of ion channels is unknown. We have recently shown that an increase in membrane cholesterol suppresses inwardly rectifying K+ (Kir2) channels that are responsible for maintaining membrane potential in a variety of cell types. Here we show that cholesterol sensitivity of Kir2 channels depends on a specific region of the C terminus of the cytosolic domain of the channel, the CD loop. Within this loop, the L222I mutation in Kir2.1 abrogates the sensitivity of the channel to cholesterol whereas a reverse mutation in the corresponding position in Kir2.3, I214L, has the opposite effect, increasing cholesterol sensitivity. Furthermore, the L222I mutation has a dominant negative effect on cholesterol sensitivity of Kir2.1 WT. Mutations of 2 additional residues in the CD loop in Kir2.1, N216D and K219Q, partially affect the sensitivity of the channel to cholesterol. Yet, whereas these mutations have been shown to affect activation of the channel by the membrane phospholipid phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], other mutations outside the CD loop that have been previously shown to affect activation of the channel by PI(4,5)P2 had no effect on cholesterol sensitivity. Mutations of the lipid-facing residues of the outer transmembrane helix also had no effect. These findings provide insights into the structural determinants of the sensitivity of Kir2 channels to cholesterol, and introduce the critical role of the cytosolic domain in cholesterol dependent channel regulation.


Frontiers in Physiology | 2014

Cholesterol binding to ion channels

Irena Levitan; Dev K. Singh; Avia Rosenhouse-Dantsker

Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.


The Journal of General Physiology | 2004

Sensitivity of Volume-regulated Anion Current to Cholesterol Structural Analogues

Victor G. Romanenko; George H. Rothblat; Irena Levitan

Depletion of membrane cholesterol and substitution of endogenous cholesterol with its structural analogues was used to analyze the mechanism by which cholesterol regulates volume-regulated anion current (VRAC) in endothelial cells. Depletion of membrane cholesterol enhanced the development of VRAC activated in a swelling-independent way by dialyzing the cells either with GTPγS or with low ionic strength solution. Using MβCD–sterol complexes, 50–80% of endogenous cholesterol was substituted with a specific analogue, as verified by gas-liquid chromatography. The effects of cholesterol depletion were reversed by the substitution of endogenous cholesterol with its chiral analogue, epicholesterol, or with a plant sterol, β-sitosterol, two analogues that mimic the effect of cholesterol on the physical properties of the membrane bilayer. Alternatively, when cholesterol was substituted with coprostanol that has only minimal effect on the membrane physical properties it resulted in VRAC enhancement, similar to cholesterol depletion. In summary, our data show that these channels do not discriminate between the two chiral analogues of cholesterol, as well as between the two cholesterols and β-sitosterol, but discriminate between cholesterol and coprostanol. These observations suggest that endothelial VRAC is regulated by the physical properties of the membrane.


Microcirculation | 2006

KATP Channels Are an Important Component of the Shear-Sensing Mechanism in the Pulmonary Microvasculature

Shampa Chatterjee; Irena Levitan; Zhihua Wei; Aron B. Fisher

Objective: To investigate the role of a KATP channel in sensing shear, specifically its cessation, in the endothelial cells of the pulmonary microvasculature.

Collaboration


Dive into the Irena Levitan's collaboration.

Top Co-Authors

Avatar

Avia Rosenhouse-Dantsker

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Diomedes E. Logothetis

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory B. Kowalsky

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yun Fang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Yulia Epshtein

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Dev K. Singh

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

George H. Rothblat

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Michael Cho

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Myung Jin Oh

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge