Irena Sherameti
University of Jena
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irena Sherameti.
Symbiosis | 2009
Irena Sherameti; Swati Tripathi; Ajit Varma
Piriformospora indica is a wide-host root-colonizing endophytic fungus which allows the plants to grow under extreme physical and nutrient stress. The fungus can be cultivated on complex and minimal substrates. It belongs to the Sebacinales in Basidiomycota. P. indica has a vast geographical distribution and is reported from Asia, South America and Australia. The fungus is interesting for basic research as well as biotechnological applications because: (i) it functions as a plant promoter and biofertilizer in nutrient-deficient soils, (ii) as a bioprotector against biotic and abiotic stresses including root and leaf fungus pathogens and insect invaders, (iii) as a bioregulator for plant growth development, early flowering, enhanced seed production, and stimulation of active ingredients in medicinal plants (iv) as well as a bio-agent for the hardening of tissue-culture-raised plants. Positive interaction are established for many plants of economic importance in arboriculture, agro-forestry, flori-horticulture including Orchids, and those utilized for energy production and paper industry. P. indica also interacts with members of bryophyte, Aneura pinguis, pteridophyte, Pteris ensiormis, Gymnosperms (Pinus halepensis) and a large number of angiosperms (145 tested till date) including the model plant Arabidopsis thaliana and other members of the mustard family. Similar to arbuscular mycorrhizal fungi, P. indica stimulates nutrient uptake in the roots and solubilizes insoluble phosphatic and sulphur components in the soil. The interaction of P. indica with the model plants Arabidopsis thaliana and barley (Hordeum vulgare L.) is used to understand the molecular basis of this beneficial plant/microbe interaction. We describe the current knowledge about the molecular basis of the interaction of plants with P. indica. An attempt is made to compare it with pathogenic and mycorrhizal plant/microbe interactions and also propose possible biotechnological applications.
Molecular Plant-microbe Interactions | 2008
Irena Sherameti; Swati Tripathi; Ajit Varma
Piriformospora indica is an endophytic fungus that colonizes the roots of many plant species, including Arabidopsis. We exposed 18-day-old Arabidopsis seedlings, which were either cocultivated with the fungus or mock-treated for the last 9 days, to mild drought stress for 84 h. During the first 36 to 48 h, seedlings cocultivated with the fungus continued to grow, while the uncolonized controls did not. This results in a threefold difference in the fresh weight and a more than twofold difference in the chlorophyll content. The photosynthetic efficiency was only slightly reduced in the colonized (F variable/F maximum [Fv/Fm] at t(0 h) = 0.82 and t(36 h) = 0.79) and was severely impaired in the uncolonized (Fv/Fm at t(0 h) = 0.81 and (t)(36 h) = 0.49) seedlings, which also showed symptoms of withering. When seedlings exposed to drought stress for 72 or 84 h were transferred to soil, 10% (72 h) and none (84 h) of uncolonized seedlings reached the flowering stage and produced seeds, while 59% (72 h) and 47% (84 h) of the colonized seedlings flowered and produced seeds. After exposure to drought stress for 3 h, the message levels for RESPONSE TO DEHYDRATION 29A, EARLY RESPONSE TO DEHYDRATION1, ANAC072, DEHYDRATION-RESPONSE ELEMENT BINDING PROTEIN2A, SALT-, AND DROUGHT-INDUCED RING FINGER1, phospholipase Ddelta, CALCINEURIN B-LIKE PROTEIN (CBL)1, CBL-INTERACTING PROTEIN KINASE3, and the histone acetyltransferase (HAT) were upregulated in the leaves of P. indica-colonized seedlings. Uncolonized seedlings responded 3 to 6 h later, and the message levels increased much less. We identified an Arabidopsis ethylmethane-sulfonate mutant that is less resistant to drought stress and in which the stress-related genes were not upregulated in the presence of P. indica. Thus, P. indica confers drought-stress tolerance to Arabidopsis, and this is associated with the priming of the expression of a quite diverse set of stress-related genes in the leaves. Transfer to soil was again associated with a faster and stronger upregulation of the message levels for phospholipase Ddelta, CBL1, and HAT in P. indica-colonized seedlings, indicating that this response might also contribute to better survival on soil.
Journal of Plant Physiology | 2010
Chao Sun; Joy Michal Johnson; Daguang Cai; Irena Sherameti; Binggan Lou
Piriformospora indica, a root-colonizing endophytic fungus of Sebacinales, promotes plant growth and confers resistance against biotic and abiotic stress. The fungus strongly colonizes the roots of Chinese cabbage, promotes root and shoot growth, and promotes lateral root formation. When colonized plants were exposed to polyethylene glycol to mimic drought stress, the activities of peroxidases, catalases and superoxide dismutases in the leaves were upregulated within 24h. The fungus retarded the drought-induced decline in the photosynthetic efficiency and the degradation of chlorophylls and thylakoid proteins. The expression levels of the drought-related genes DREB2A, CBL1, ANAC072 and RD29A were upregulated in the drought-stressed leaves of colonized plants. Furthermore, the CAS mRNA level for the thylakoid membrane associated Ca(2+)-sensing regulator and the amount of the CAS protein increased. We conclude that antioxidant enzyme activities, drought-related genes and CAS are three crucial targets of P. indica in Chinese cabbage leaves during the establishment of drought tolerance. P. indica-colonized Chinese cabbage provides a good model system to study root-to-shoot communication.
New Phytologist | 2010
Iris Camehl; Irena Sherameti; Yvonne Venus; Gerit Bethke; Ajit Varma; Justin Lee
*The endophytic fungus Piriformospora indica colonizes the roots of the model plant Arabidopsis thaliana and promotes its growth and seed production. The fungus can be cultivated in axenic culture without a host, and therefore this is an excellent system to investigate plant-fungus symbiosis. *The growth of etr1, ein2 and ein3/eil1 mutant plants was not promoted or even inhibited by the fungus; the plants produced less seeds and the roots were more colonized compared with the wild-type. This correlates with a mild activation of defence responses. The overexpression of ETHYLENE RESPONSE FACTOR1 constitutively activated defence responses, strongly reduced root colonization and abolished the benefits for the plants. *Piriformospora indica-mediated stimulation of growth and seed yield was not affected by jasmonic acid, and jasmonic acid-responsive promoter beta-glucuronidase gene constructs did not respond to the fungus in Arabidopsis roots. *We propose that ethylene signalling components and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis. The results show that the restriction of fungal growth by ethylene signalling components is required for the beneficial interaction between the two symbionts.
Plant Journal | 2008
Irena Sherameti; Yvonne Venus; Corinna Drzewiecki; Swati Tripathi; Vipin Mohan Dan; Inke Nitz; Ajit Varma; Florian M. W. Grundler
Piriformospora indica, an endophyte of the Sebacinaceae family, promotes growth and seed production of many plant species, including Arabidopsis. Growth of a T-DNA insertion line in PYK10 is not promoted and the plants do not produce more seeds in the presence of P. indica, although their roots are more colonized by the fungus than wild-type roots. Overexpression of PYK10 mRNA did not affect root colonization and the response to the fungus. PYK10 codes for a root- and hypocotyl-specific beta-glucosidase/myrosinase, which is implicated to be involved in plant defences against herbivores and pathogens. Expression of PYK10 is activated by the basic helix-loop-helix domain containing transcription factor NAI1, and two Arabidopsis lines with mutations in the NAI1 gene show the same response to P. indica as the PYK10 insertion line. PYK10 transcript and PYK10 protein levels are severely reduced in a NAI1 mutant, indicating that PYK10 and not the transcription factor NAI1 is responsible for the response to the fungus. In wild-type roots, the message level for a leucine-rich repeat protein LRR1, but not for plant defensin 1.2 (PDF1.2), is upregulated in the presence of P. indica. In contrast, in lines with reduced PYK10 levels the PDF1.2, but not LRR1, message level is upregulated in the presence of the fungus. We propose that PYK10 restricts root colonization by P. indica, which results in the repression of defence responses and the upregulation of responses leading to a mutualistic interaction between the two symbiotic partners.
PLOS Pathogens | 2011
Iris Camehl; Corinna Drzewiecki; Jyothilakshmi Vadassery; Bationa Shahollari; Irena Sherameti; Celine Forzani; Teun Munnik; Heribert Hirt
Piriformospora indica is an endophytic fungus that colonizes roots of many plant species and promotes growth and resistance to certain plant pathogens. Despite its potential use in agriculture, little is known on the molecular basis of this beneficial plant-fungal interaction. In a genetic screen for plants, which do not show a P. indica- induced growth response, we isolated an Arabidopsis mutant in the OXI1 (Oxidative Signal Inducible1) gene. OXI1 has been characterized as a protein kinase which plays a role in pathogen response and is regulated by H2O2 and PDK1 (3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE1). A genetic analysis showed that double mutants of the two closely related PDK1.1 and PDK1.2 genes are defective in the growth response to P. indica. While OXI1 and PDK1 gene expression is upregulated in P. indica-colonized roots, defense genes are downregulated, indicating that the fungus suppresses plant defense reactions. PDK1 is activated by phosphatidic acid (PA) and P. indica triggers PA synthesis in Arabidopsis plants. Under beneficial co-cultivation conditions, H2O2 formation is even reduced by the fungus. Importantly, phospholipase D (PLD)α1 or PLDδ mutants, which are impaired in PA synthesis do not show growth promotion in response to fungal infection. These data establish that the P. indica-stimulated growth response is mediated by a pathway consisting of the PLD-PDK1-OXI1 cascade.
Antioxidants & Redox Signaling | 2003
Thomas Pfannschmidt; Katia Schütze; Vidal Fey; Irena Sherameti
Chloroplasts are genetically semiautonomous organelles that contain their own subset of 100-120 genes coding for chloroplast proteins, tRNAs, and rRNAs. However, the great majority of the chloroplast proteins are encoded in the nucleus and must be imported into the organelle after their translation in the cytosol. This arrangement requires a high degree of coordination between the gene expression machineries in chloroplasts and nucleus, which is achieved by a permanent exchange of information between both compartments. The existence of such coordinating signals has long been known; however, the underlying molecular mechanisms and signaling routes are not understood. The present data indicate that the expression of nuclear-encoded chloroplast proteins is coupled to the functional state of the chloroplasts. Photosynthesis, which is the major function of chloroplasts, plays a crucial role in this context. Changes in the reduction/oxidation (redox) state of components of the photosynthetic machinery act as signals, which regulate the expression of chloroplast proteins in both chloroplasts and nucleus and help to coordinate the expression both in compartments. Recent advances in understanding chloroplast redox regulation of nuclear gene expression are summarized, and the importance for intracellular signaling is discussed.
Plant Signaling & Behavior | 2012
Aparajita Das; Shwet Kamal; Najam A. Shakil; Irena Sherameti; Meenakshi Dua; Narendra Tuteja; Atul Kumar Johri; Ajit Varma
This study was undertaken to investigate the influence of plant probiotic fungus Piriformospora indica on the medicinal plant C. forskohlii. Interaction of the C. forskohlii with the root endophyte P. indica under field conditions, results in an overall increase in aerial biomass, chlorophyll contents and phosphorus acquisition. The fungus also promoted inflorescence development, consequently the amount of p-cymene in the inflorescence increased. Growth of the root thickness was reduced in P. indica treated plants as they became fibrous, but developed more lateral roots. Because of the smaller root biomass, the content of forskolin was decreased. The symbiotic interaction of C. forskohlii with P. indica under field conditions promoted biomass production of the aerial parts of the plant including flower development. The plant aerial parts are important source of metabolites for medicinal application. Therefore we suggest that the use of the root endophyte fungus P. indica in sustainable agriculture will enhance the medicinally important chemical production.
The Plant Cell | 2002
Jörg Meurer; Lina Lezhneva; Katrin Amann; Manfred Gödel; Staver Bezhani; Irena Sherameti
Positional cloning of the hcf109 (high chlorophyll fluorescence) mutation in Arabidopsis has identified a nucleus-encoded, plastid-localized release factor 2–like protein, AtprfB, indicating that the processes of translational termination in chloroplasts resemble those of eubacteria. Control of atprfB expression by light and tissues is connected to chloroplast development. A point mutation at the last nucleotide of the second intron causes a new splice site farther downstream, resulting in a deletion of seven amino acid residues in the N-terminal region of the Hcf109 protein. The mutation causes decreased stability of UGA-containing mRNAs. Our data suggest that transcripts with UGA stop codons are terminated exclusively by AtprfB in chloroplasts and that AtprfB is involved in the regulation of both mRNA stability and protein synthesis. Furthermore, sequence data reveal a +1 frameshift at an internal in-frame TGA stop codon in the progenitor prfB gene of cyanobacteria. The expression pattern and functions of atprfB could reflect evolutionary driving forces toward the conservation of TGA stop codons exclusively in plastid genomes of land plants.
BMC Plant Biology | 2014
Chao Sun; Yongqi Shao; Khabat Vahabi; Jing Lu; Samik Bhattacharya; Sheqin Dong; Kai-Wun Yeh; Irena Sherameti; Binggan Lou; Ian T. Baldwin
BackgroundVerticillium dahliae (Vd) is a soil-borne vascular pathogen which causes severe wilt symptoms in a wide range of plants. The microsclerotia produced by the pathogen survive in soil for more than 15 years.ResultsHere we demonstrate that an exudate preparation induces cytoplasmic calcium elevation in Arabidopsis roots, and the disease development requires the ethylene-activated transcription factor EIN3. Furthermore, the beneficial endophytic fungus Piriformospora indica (Pi) significantly reduced Vd-mediated disease development in Arabidopsis. Pi inhibited the growth of Vd in a dual culture on PDA agar plates and pretreatment of Arabidopsis roots with Pi protected plants from Vd infection. The Pi-pretreated plants grew better after Vd infection and the production of Vd microsclerotia was dramatically reduced, all without activating stress hormones and defense genes in the host.ConclusionsWe conclude that Pi is an efficient biocontrol agent that protects Arabidopsis from Vd infection. Our data demonstrate that Vd growth is restricted in the presence of Pi and the additional signals from Pi must participate in the regulation of the immune response against Vd.