Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene A. Davidova is active.

Publication


Featured researches published by Irene A. Davidova.


Applied and Environmental Microbiology | 2000

Anaerobic Oxidation of n-Dodecane by an Addition Reaction in a Sulfate-Reducing Bacterial Enrichment Culture

Kevin G. Kropp; Irene A. Davidova; Joseph M. Suflita

ABSTRACT We identified trace metabolites produced during the anaerobic biodegradation of H26- and D26-n-dodecane by an enrichment culture that mineralizes these compounds in a sulfate-dependent fashion. The metabolites are dodecylsuccinic acids that, in the case of the perdeuterated substrate, retain all of the deuterium atoms. The deuterium retention and the gas chromatography-mass spectrometry fragmentation patterns of the derivatized metabolites suggest that they are formed by C—H or C—D addition across the double bond of fumarate. As trimethylsilyl esters, two nearly coeluting metabolites of equal abundance with nearly identical mass spectra were detected from each of H26- and D26-dodecane, but as methyl esters, only a single metabolite peak was detected for each parent substrate. An authentic standard of protonatedn-dodecylsuccinic acid that was synthesized and derivatized by the two methods had the same fragmentation patterns as the metabolites of H26-dodecane. However, the standard gave only a single peak for each ester type and gas chromatographic retention times different from those of the derivatized metabolites. This suggests that the succinyl moiety in the dodecylsuccinic acid metabolites is attached not at the terminal methyl group of the alkane but at a subterminal position. The detection of two equally abundant trimethylsilyl-esterified metabolites in culture extracts suggests that the analysis is resolving diastereomers which have the succinyl moiety located at the same subterminal carbon in two different absolute configurations. Alternatively, there may be more than one methylene group in the alkane that undergoes the proposed fumarate addition reaction, giving at least two structural isomers in equal amounts.


Environmental Microbiology | 2010

Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields

Lisa M. Gieg; Irene A. Davidova; Kathleen E. Duncan; Joseph M. Suflita

Petrochemical and geological evidence suggest that petroleum in most reservoirs is anaerobically biodegraded to some extent. However, the conditions for this metabolism and the cultivation of the requisite microorganisms are rarely established. Here, we report on microbial hydrocarbon metabolism in two distinct oilfields on the North Slope of Alaska (designated Fields A and B). Signature anaerobic hydrocarbon metabolites were detected in produced water from the two oilfields offering evidence of in situ biodegradation activity. Rate measurements revealed that sulfate reduction was an important electron accepting process in Field A (6-807 µmol S l(-1) day(-1)), but of lesser consequence in Field B (0.1-10 µmol S l(-1) day(-1)). Correspondingly, enrichments established at 55°C with a variety of hydrocarbon mixtures showed relatively high sulfate consumption but low methane production in Field A incubations, whereas the opposite was true of the Field B enrichments. Repeated transfer of a Field B enrichment showed ongoing methane production in the presence of crude oil that correlated with ≥ 50% depletion of several component hydrocarbons. Molecular-based microbial community analysis of the methanogenic oil-utilizing consortium revealed five bacterial taxa affiliating with the orders Thermotogales, Synergistales, Deferribacterales (two taxa) and Thermoanaerobacterales that have known fermentative or syntrophic capability and one methanogen that is most closely affiliated with uncultured clones in the H(2)-using family Methanobacteriaceae. The findings demonstrate that oilfield-associated microbial assemblages can metabolize crude oil under the thermophilic and anaerobic conditions prevalent in many petroleum reservoirs.


Environmental Science & Technology | 2010

Diversity of Benzyl- and Alkylsuccinate Synthase Genes in Hydrocarbon-Impacted Environments and Enrichment Cultures

Amy V. Callaghan; Irene A. Davidova; Kristen Savage-Ashlock; Victoria A. Parisi; Lisa M. Gieg; Joseph M. Suflita; Boris Wawrik

Hydrocarbon-degrading microorganisms play an important role in the natural attenuation of spilled petroleum in a variety of anoxic environments. The role of benzylsuccinate synthase (BSS) in aromatic hydrocarbon degradation and its use as a biomarker for field investigations are well documented. The recent discovery of alkylsuccinate synthase (ASS) allows the opportunity to test whether its encoding gene, assA, can serve as a comparable biomarker of anaerobic alkane degradation. Degenerate assA- and bssA-targeted PCR primers were designed in order to survey the diversity of genes associated with aromatic and aliphatic hydrocarbon biodegradation in petroleum-impacted environments and enrichment cultures. DNA was extracted from an anaerobic alkane-degrading isolate (Desulfoglaeba alkenexedens ALDC), hydrocarbon-contaminated river and aquifer sediments, a paraffin-degrading enrichment, and a propane-utilizing mixed culture. Partial assA and bssA genes were PCR amplified, cloned, and sequenced, yielding several novel clades of assA genes. These data expand the range of alkane-degrading conditions for which relevant gene sequences are available and indicate that considerable diversity of assA genes can be found in hydrocarbon-impacted environments. The detection of genes associated with anaerobic alkane degradation in conjunction with the in situ detection of alkylsuccinate metabolites was also demonstrated. Comparable molecular signals of assA/bssA were not found when environmental metagenome databases of uncontaminated sites were searched. These data confirm that the assA gene is a useful biomarker for anaerobic alkane metabolism.


FEMS Microbiology Ecology | 2012

Field and laboratory studies on the bioconversion of coal to methane in the San Juan Basin

Boris Wawrik; Margarita Mendivelso; Victoria A. Parisi; Joseph M. Suflita; Irene A. Davidova; Christopher R. Marks; Joy D. Van Nostrand; Yuting Liang; Jizhong Zhou; Brad J. Huizinga; Dariusz Strąpoć; Amy V. Callaghan

The bioconversion of coal to methane in the San Juan Basin, New Mexico, was investigated. Production waters were analyzed via enrichment studies, metabolite-profiling, and culture-independent methods. Analysis of 16S rRNA gene sequences indicated the presence of methanogens potentially capable of acetoclastic, hydrogenotrophic, and methylotrophic metabolisms, predominantly belonging to the Methanosarcinales and Methanomicrobiales. Incubations of produced water and coal readily produced methane, but there was no correlation between the thermal maturity and methanogenesis. Coal methanogenesis was greater when samples with a greater richness of Firmicutes were utilized. A greater archaeal diversity was observed in the presence of several aromatic and short-chain fatty acid metabolites. Incubations amended with lactate, hydrogen, formate, and short-chain alcohols produced methane above un-amended controls. Methanogenesis from acetate was not observed. Metabolite profiling showed the widespread occurrence of putative aromatic ring intermediates including benzoate, toluic acids, phthalic acids, and cresols. The detection of saturated and unsaturated alkylsuccinic acids indicated n-alkane and cyclic alkane/alkene metabolism. Microarray analysis complemented observations based on hybridization to functional genes related to the anaerobic metabolism of aromatic and aliphatic substrates. These data suggest that coal methanogenesis is unlikely to be limited by methanogen biomass, but rather the activation and degradation of coal constituents.


Applied and Environmental Microbiology | 2005

Stable Isotopic Studies of n-Alkane Metabolism by a Sulfate-Reducing Bacterial Enrichment Culture

Irene A. Davidova; Lisa M. Gieg; Mark A. Nanny; Kevin G. Kropp; Joseph M. Suflita

ABSTRACT Gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy were used to study the metabolism of deuterated n-alkanes (C6 to C12) and 1-13C-labeled n-hexane by a highly enriched sulfate-reducing bacterial culture. All substrates were activated via fumarate addition to form the corresponding alkylsuccinic acid derivatives as transient metabolites. Formation of d14-hexylsuccinic acid in cell extracts from exogenously added, fully deuterated n-hexane confirmed that this reaction was the initial step in anaerobic alkane metabolism. Analysis of resting cell suspensions amended with 1-13C-labeled n-hexane confirmed that addition of the fumarate occurred at the C-2 carbon of the parent substrate. Subsequent metabolism of hexylsuccinic acid resulted in the formation of 4-methyloctanoic acid, and 3-hydroxy-4-methyloctanoic acid was tentatively identified. We also found that 13C nuclei from 1-13C-labeled n-hexane became incorporated into the succinyl portion of the initial metabolite in a manner that indicated that 13C-labeled fumarate was formed and recycled during alkane metabolism. Collectively, the findings obtained with a sulfate-reducing culture using isotopically labeled alkanes augment and support the previously proposed pathway (H. Wilkes, R. Rabus, T. Fischer, A. Armstroff, A. Behrends, and F. Widdel, Arch. Microbiol. 177:235-243, 2002) for metabolism of deuterated n-hexane by a denitrifying bacterium.


The ISME Journal | 2007

Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment.

Irene A. Davidova; Lisa M. Gieg; Kathleen E. Duncan; Joseph M. Suflita

Information on the susceptibility of higher molecular weight polynuclear aromatic hydrocarbons to anaerobic biodegradation is relatively rare. We obtained a sulfate-reducing bacterial enrichment capable of phenanthrene metabolism from a hydrocarbon-contaminated marine sediment. Phenanthrene degradation was in stoichiometric agreement with the theoretically expected amount of sulfate reduction and inhibited by molybdate. Mineralization of 14C-phenanthrene by the enrichment was confirmed by the recovery of the expected amount of 14CO2. Stable isotope studies with protonated or deuterated phenanthrene resulted in the detection of the correspondingly labeled phenanthrene carboxylic acid by gas chromatography–mass spectrometry. Comparison of the metabolite profile with a synthesized standard confirmed that the parent molecule was carboxylated at the C-2 position. Incorporation of 13C-bicarbonate into the carboxyl group implicated a direct carboxylation of phenanthrene as a likely key initial reaction. Denaturing gradient gel electrophoresis analysis of the enrichment showed only two major bands and 16S rRNA sequences obtained by cloning clustered with known hydrocarbon-degrading sulfate-reducing δ-proteobacteria, indicating their possible involvement in the anaerobic oxidation of phenanthrene via carboxylation as the initial activation reaction.


Environmental Microbiology | 2012

Involvement of thermophilic archaea in the biocorrosion of oil pipelines

Irene A. Davidova; Kathleen E. Duncan; B. Monica Perez-Ibarra; Joseph M. Suflita

Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens.


Frontiers in Microbiology | 2016

Metabolic Capability of a Predominant Halanaerobium sp. in Hydraulically Fractured Gas Wells and Its Implication in Pipeline Corrosion

Renxing Liang; Irene A. Davidova; Christopher R. Marks; Blake W. Stamps; Brian H. Harriman; Bradley S. Stevenson; Kathleen E. Duncan; Joseph M. Suflita

Microbial activity associated with produced water from hydraulic fracturing operations can lead to gas souring and corrosion of carbon-steel equipment. We examined the microbial ecology of produced water and the prospective role of the prevalent microorganisms in corrosion in a gas production field in the Barnett Shale. The microbial community was mainly composed of halophilic, sulfidogenic bacteria within the order Halanaerobiales, which reflected the geochemical conditions of highly saline water containing sulfur species (S2O32-, SO42-, and HS-). A predominant, halophilic bacterium (strain DL-01) was subsequently isolated and identified as belonging to the genus Halanaerobium. The isolate could degrade guar gum, a polysaccharide polymer used in fracture fluids, to produce acetate and sulfide in a 10% NaCl medium at 37°C when thiosulfate was available. To mitigate potential deleterious effects of sulfide and acetate, a quaternary ammonium compound was found to be an efficient biocide in inhibiting the growth and metabolic activity of strain DL-01 relative to glutaraldehyde and tetrakis (hydroxymethyl) phosphonium sulfate. Collectively, our findings suggest that predominant halophiles associated with unconventional shale gas extraction could proliferate and produce sulfide and acetate from the metabolism of polysaccharides used in hydraulic fracturing fluids. These metabolic products might be returned to the surface and transported in pipelines to cause pitting corrosion in downstream infrastructure.


Biofouling | 2012

Sulphide production and corrosion in seawaters during exposure to FAME diesel

Jason S. Lee; Richard I. Ray; Brenda J. Little; Kathleen E. Duncan; Athenia L. Oldham; Irene A. Davidova; Joseph M. Suflita

Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.


Methods in Enzymology | 2005

Enrichment and Isolation of Anaerobic Hydrocarbon‐Degrading Bacteria

Irene A. Davidova; Joseph M. Suflita

Recent progress in microbiology resulted in the enrichment and isolation of anaerobic bacteria capable of the biodegradation of various hydrocarbons under a variety of electron-accepting conditions. Problems challenging the enrichment and isolation of anaerobic hydrocarbonclastic organisms required new approaches and modifications of conventional microbiological techniques. This chapter summarizes the collective experience accumulated in this area starting from anaerobic sampling precautions and includes all stages of cultivation from the construction of initial incubations to final isolation steps and the evaluation of culture purity.

Collaboration


Dive into the Irene A. Davidova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boris Wawrik

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Brenda J. Little

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jason S. Lee

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Richard I. Ray

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge