Irene Cózar-Castellano
University of Valladolid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irene Cózar-Castellano.
American Journal of Physiology-endocrinology and Metabolism | 2012
Margarita Jiménez-Palomares; Juan Jose Ramos-Rodriguez; José Francisco López-Acosta; Mar Pacheco-Herrero; Alfonso M. Lechuga-Sancho; Germán Perdomo; Monica Garcia-Alloza; Irene Cózar-Castellano
Type 2 diabetes (T2D) mellitus and Alzheimers disease (AD) are two prevalent diseases with comparable pathophysiological features and genetic predisposition. Patients with AD are more susceptible to develop T2D. However, the molecular mechanism linking AD and T2D remains elusive. In this study, we have generated a new mouse model to test the hypothesis that AD would prompt the onset of T2D in mice. To test our hypothesis, we crossed Alzheimer APPswe/PS1dE9 (APP/PS1) transgenic mice with mice partially deficient in leptin signaling (db/+). Body weight, plasma glucose, and insulin levels were monitored. Phenotypic characterization of glucose metabolism was performed using glucose and insulin tolerance tests. β-Cell mass, islet volume, and islet number were analyzed by histomorphometry. APP/PS1 coexpression in mice with intact leptin receptor signaling did not show any metabolic perturbations in glucose metabolism or insulin sensitivity. In contrast, APP/PS1 coexpression in db/+ mice resulted in nonfasting hyperglycemia, hyperinsulinemia, and hypercholesterolemia without changes in body weight. Conversely, fasting blood glucose and cholesterol levels remained unchanged. Coinciding with altered glucose metabolism, APP/PS1 coexpression in db/+ mice resulted in glucose intolerance, insulin resistance, and impaired insulin signaling. In addition, histomorphometric analysis of pancreata revealed augmented β-cell mass. Taken together, these findings provide experimental evidence to support the notion that aberrant Aβ production might be a mechanistic link underlying the pathology of insulin resistance and T2D in AD.
Psychoneuroendocrinology | 2013
Juan Jose Ramos-Rodriguez; Oscar Ortiz; Margarita Jiménez-Palomares; Kevin R. Kay; Esther Berrocoso; Maria Isabel Murillo-Carretero; Germán Perdomo; Tara L. Spires-Jones; Irene Cózar-Castellano; Alfonso M. Lechuga-Sancho; Monica Garcia-Alloza
Although age remains the main risk factor to suffer Alzheimers disease (AD) and vascular dementia (VD), type 2 diabetes (T2D) has turned up as a relevant risk factor for dementia. However, the ultimate underlying mechanisms for this association remain unclear. In the present study we analyzed central nervous system (CNS) morphological and functional consequences of long-term insulin resistance and T2D in db/db mice (leptin receptor KO mice). We also included C57Bl6 mice fed with high fat diet (HFD) and a third group of C57Bl6 streptozotocin (STZ) treated mice. Db/db mice exhibited pathological characteristics that mimic both AD and VD, including age dependent cognitive deterioration, brain atrophy, increased spontaneous hemorrhages and tau phosphorylation, affecting the cortex preferentially. A similar profile was observed in STZ-induced diabetic mice. Moreover metabolic parameters, such as body weight, glucose and insulin levels are good predictors of many of these alterations in db/db mice. In addition, in HFD-induced hyperinsulinemia in C57Bl6 mice, we only observed mild CNS alterations, suggesting that central nervous system dysfunction is associated with well established T2D. Altogether our results suggest that T2D may promote many of the pathological and behavioral alterations observed in dementia, supporting that interventions devoted to control glucose homeostasis could improve dementia progress and prognosis.
PLOS ONE | 2012
José Manuel Tirado-Vélez; Insaf Joumady; Ana Saez-Benito; Irene Cózar-Castellano; Germán Perdomo
Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40–70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.
PLOS ONE | 2014
Juan Jose Ramos-Rodriguez; Sara Molina-Gil; Oscar Ortiz-Barajas; Margarita Jiménez-Palomares; Germán Perdomo; Irene Cózar-Castellano; Alfonso M. Lechuga-Sancho; Monica Garcia-Alloza
Type 2 diabetes (T2D) is an important risk factor to suffer dementia, including Alzheimer’s disease (AD), and some neuropathological features observed in dementia could be mediated by T2D metabolic alterations. Since brain atrophy and impaired neurogenesis have been observed both T2D and AD we analyzed central nervous system (CNS) morphological alterations in the db/db mice (leptin receptor KO mice), as a model of long-term insulin resistance and T2D, and in C57Bl6 mice fed with high fat diet (HFD), as a model of diet induced insulin resistance and prediabetes. Db/db mice showed an age-dependent cortical and hippocampal atrophy, whereas in HFD mice cortex and hippocampus were preserved. We also detected increased neurogenesis and cell proliferation rates in young db/db mice when compared with control littermates. Our study shows that metabolic parameters serve as predictors of both atrophy and altered proliferation and neurogenesis in the CNS. Moreover in the cortex, atrophy, cell proliferation and neurogenesis were significantly correlated. Our data suggest that T2D may underline some of the pathological features observed in the dementia process. They also support that blood glucose control in elderly patients could help to slow down dementia evolution and maybe, improve its prognosis.
American Journal of Physiology-endocrinology and Metabolism | 2013
Francisco Visiedo; Fernando Bugatto; Viviana Sánchez; Irene Cózar-Castellano; Jose L. Bartha; Germán Perdomo
Placentas of women with gestational diabetes mellitus (GDM) exhibit an altered lipid metabolism. The mechanism by which GDM is linked to alterations in placental lipid metabolism remains obscure. We hypothesized that high glucose levels reduce mitochondrial fatty acid oxidation (FAO) and increase triglyceride accumulation in human placenta. To test this hypothesis, we measured FAO, fatty acid esterification, de novo fatty acid synthesis, triglyceride levels, and carnitine palmitoyltransferase activities (CPT) in placental explants of women with GDM or no pregnancy complication. In women with GDM, FAO was reduced by ~30% without change in mitochondrial content, and triglyceride content was threefold higher than in the control group. Likewise, in placental explants of women with no complications, high glucose levels reduced FAO by ~20%, and esterification increased linearly with increasing fatty acid concentrations. However, de novo fatty acid synthesis remained unchanged between high and low glucose levels. In addition, high glucose levels increased triglyceride content approximately twofold compared with low glucose levels. Furthermore, etomoxir-mediated inhibition of FAO enhanced esterification capacity by ~40% and elevated triglyceride content 1.5-fold in placental explants of women, with no complications. Finally, high glucose levels reduced CPT I activity by ~70% and phosphorylation levels of acetyl-CoA carboxylase by ~25% in placental explants of women, with no complications. We reveal an unrecognized regulatory mechanism on placental fatty acid metabolism by which high glucose levels reduce mitochondrial FAO through inhibition of CPT I, shifting flux of fatty acids away from oxidation toward the esterification pathway, leading to accumulation of placental triglycerides.
Psychoneuroendocrinology | 2015
Juan Jose Ramos-Rodriguez; Margarita Jiménez-Palomares; Maria Isabel Murillo-Carretero; Carmen Infante-Garcia; Esther Berrocoso; Fernando Hernandez-Pacho; Alfonso M. Lechuga-Sancho; Irene Cózar-Castellano; Monica Garcia-Alloza
Aging remains the main risk factor to suffer Alzheimers disease (AD), though epidemiological studies also support that type 2 diabetes (T2D) is a major contributor. In order to explore the close relationship between both pathologies we have developed an animal model presenting both AD and T2D, by crossing APP/PS1 mice (AD model) with db/db mice (T2D model). We traced metabolic and cognitive evolution before T2D or AD pathology is present (4 weeks of age), when T2D has debuted but no senile plaques are present (14 weeks of age) and when both pathologies are well established (26 weeks of age). APP/PS1xdb/db mice showed an age-dependent synergistic effect between T2D and AD. Significant brain atrophy and tau pathology were detected in the cortex by 14 weeks, that spread to the hippocampus by 26 weeks of age. Severe cognitive impairment was also detected as soon as at 14 weeks of age. Interestingly, in APP/PS1xdb/db mice we observed a shift in Aβ soluble/insoluble levels, and whereas more toxic soluble species were favoured, senile plaques (SP) were reduced. An overall increase of microglia activation was observed in APP/PS1xdb/db mice. We also found exacerbated hemorrhagic burden in APP/PS1xdbd/db mice, suggesting that blood brain barrier alterations may be responsible for the early pathological features observed. Moreover, metabolic parameters can predict many of these alterations, supporting a role for T2D in AD pathology. This new model provides a relevant tool to further explore the relationship between T2D, AD and vascular implications, offering the possibility to assess therapeutic approaches, that by improving T2D metabolic control could delay or prevent AD pathology.
Metabolism-clinical and Experimental | 2011
Margarita Jiménez-Palomares; Irene Cózar-Castellano; Maria D. Ganfornina; Diego Sanchez; Germán Perdomo
Apolipoprotein D (ApoD) is an atypical apolipoprotein with an incompletely understood function in the regulation of triglyceride and glucose metabolism. We have demonstrated that elevated ApoD production in mice results in improved postprandial triglyceride clearance. This work studies the role of ApoD deficiency in the regulation of triglyceride and glucose metabolism and its dependence on aging. We used ApoD knockout (ApoD-KO) mice of 3 and 21 months of age. Body weight and food intake were measured. Hepatic histology, triglyceride content, lipoprotein lipase levels, and plasma metabolites were studied. Phenotypic characterization of glucose metabolism was performed using glucose tolerance test. β-Cell mass, islet volume, and islet number were analyzed by histomorphometry. Apolipoprotein D deficiency results in nonfasting hypertriglyceridemia in young (P = .01) and aged mice (P = .002). In young ApoD-KO mice, hypertriglyceridemia was associated with 30% to 50% increased food intake in nonfasting and fasting conditions, respectively, without changes in body weight. In addition, lipoprotein lipase levels were reduced by 35% in adipose tissue (P = .006). In aged ApoD-KO mice, hypertriglyceridemia was not associated with changes in food intake or body weight, whereas hepatic triglyceride levels were reduced by 35% (P = .02). Furthermore, nonfasting plasma insulin levels were elevated by 2-fold in young (P = .016) and aged (P = .004) ApoD-KO mice, without changes in blood glucose levels, glucose tolerance, β-cell mass, or islet number. These findings underscore the importance of ApoD in the regulation of plasma insulin levels and triglyceride metabolism, suggesting that ApoD plays an important role in the pathogenesis of dyslipidemia.
Placenta | 2015
Francisco Visiedo; Fernando Bugatto; C. Carrasco-Fernández; Ana Saez-Benito; Rosa María Mateos; Irene Cózar-Castellano; Jose L. Bartha; Germán Perdomo
INTRODUCTION To evaluate the impact of the pro-inflammatory cytokine hepatocyte growth factor (HGF) on the regulation of glucose and lipid placental metabolism. METHODS HGF levels were quantified in amniotic fluid and placenta from control and obese women. 2-deoxy-glucose (2-DOG) uptake, glycolysis, fatty acid oxidation (FAO), fatty acid esterification, de novo fatty acid synthesis, triglyceride levels and carnitine palmitoyltransferase activities (CPT) were measured in placental explants upon addition of pathophysiological HGF levels. RESULTS In obese women, total- and -activated-HGF levels in amniotic fluid were elevated ∼24%, and placental HGF levels were ∼3-fold higher than in control women. At a similar dose to that present in amniotic fluid of obese women, HGF (30 ng/mL) increased Glut-1 levels and 2-DOG uptake by ∼25-30% in placental explants. HGF-mediated effect on 2-DOG uptake was dependent on the activation of phosphatidylinositol 3-kinase signaling pathway. In addition, HGF decreased ∼20% FAO, whereas esterification and de novo fatty acid synthesis increased ∼15% and ∼25% respectively, leading to 2-fold triglyceride accumulation in placental explants. In parallel, HGF reduced CPT-I activity ∼70%. DISCUSSION HGF is a cytokine elevated in amniotic fluid and placental tissue of obese women, which through its ability to stimulate 2-DOG uptake and metabolism impairs FAO and enhances esterification and de novo fatty acid synthesis, leading to accumulation of placental triglycerides.
PLOS ONE | 2013
José Francisco López-Acosta; José Luis Moreno-Amador; Margarita Jiménez-Palomares; Ana R. Díaz-Marrero; Mercedes Cueto; Germán Perdomo; Irene Cózar-Castellano
There is an urgency to find new treatments for the devastating epidemic of diabetes. Pancreatic β-cells viability and function are impaired in the two most common forms of diabetes, type 1 and type 2. Regeneration of pancreatic β-cells has been proposed as a potential therapy for diabetes. In a preliminary study, we screened a collection of marine products for β-cell proliferation. One unique compound (epoxypukalide) showed capability to induce β-cell replication in the cell line INS1 832/13 and in primary rat cell cultures. Epoxypukalide was used to study β-cell proliferation by [3H]thymidine incorporation and BrdU incorporation followed by BrdU/insulin staining in primary cultures of rat islets. AKT and ERK1/2 signalling pathways were analyzed. Cell cycle activators, cyclin D2 and cyclin E, were detected by western-blot. Apoptosis was studied by TUNEL and cleaved caspase 3. β-cell function was measured by glucose-stimulated insulin secretion. Epoxypukalide induced 2.5-fold increase in β-cell proliferation; this effect was mediated by activation of ERK1/2 signalling pathway and upregulation of the cell cycle activators, cyclin D2 and cyclin E. Interestingly, epoxypukalide showed protection from basal (40% lower versus control) and cytokine-induced apoptosis (80% lower versus control). Finally, epoxypukalide did not impair β-cell function when measured by glucose-stimulated insulin secretion. In conclusion, epoxypukalide induces β-cell proliferation and protects against basal and cytokine-mediated β-cell death in primary cultures of rat islets. These findings may be translated into new treatments for diabetes.
Reproductive Sciences | 2015
Francisco Visiedo; Fernando Bugatto; Rocío Quintero-Prado; Irene Cózar-Castellano; Jose L. Bartha; Germán Perdomo
Placental metabolism is an important mechanism for the regulation of fetal growth and long-term health of the newborns. In this study, we investigated the effects of maternal metabolic environment on human placental fatty acid and glucose metabolism. We used placental explants from uncomplicated pregnancies or pregnancies complicated with gestational diabetes mellitus (GDM), undergoing vaginal delivery (VD) or cesarean section (CS). Fatty acid oxidation (FAO) and glucose uptake (2-DOG) were similar in both modes of delivery in normal and GDM pregnancies. However, placental explants from GDM exhibited 40% to 50% reduced FAO capacity compared to control placentas in women undergoing VD or CS. In contrast, 2-DOG uptake was 2- to 3-fold higher in placental explants from GDM compared to control placentas in women undergoing VD or CS, respectively. In conclusion, ex vivo placental fuel selection is influenced by maternal GDM, but placental metabolic characteristics are not altered by the mode of delivery.