Irene H.L. Hamelers
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irene H.L. Hamelers.
Clinical Cancer Research | 2009
Irene H.L. Hamelers; Rutger W.H.M. Staffhorst; Jarno Voortman; Jan Reedijk; P.M.P. van Bergen en Henegouwen; A.I.P.M. de Kroon
Purpose: Cisplatin nanocapsules, nanoprecipitates of cisplatin encapsulated in phospholipid bilayers, exhibit increased in vitro toxicity compared with the free drug toward a panel of human ovarian carcinoma cell lines. To elucidate the mechanism of cell killing by nanocapsules and to understand the cell line dependence of nanocapsule efficacy, the route of uptake and the intracellular fate of the nanocapsules were investigated. Experimental Design: Intracellular platinum accumulation and cisplatin-DNA-adduct formation were measured in cell lines that differ in sensitivity to cisplatin nanocapsules. Confocal fluorescence microscopy in combination with down-regulation with small interfering RNA was used to map the route of cellular uptake of nanocapsules containing fluorescein-labeled cisplatin. Results: In sensitive cell lines, cisplatin from nanocapsules is taken up much more efficiently than the free compound. In IGROV-1 cells, the increased platinum accumulation results in augmented cisplatin-DNA-adduct formation. Confocal fluorescence microscopy revealed that the uptake of nanocapsules is energy dependent. Colocalization with markers of early and late endosomes indicated uptake via endocytosis. Down-regulation of caveolin-1 with small interfering RNA inhibited the uptake and cytotoxic effect of nanocapsules in IGROV-1 cells. Ovarian carcinoma cells, in which the nanocapsules are less effective than in IGROV-1 cells, do not internalize the nanocapsules (OVCAR-3) or accumulate them in an endocytic compartment after clathrin-mediated endocytosis (A2780). Conclusions: The high cytotoxicity of cisplatin nanocapsules requires caveolin-1-dependent endocytosis that is followed by release of the drug from a late endosomal/lysosomal compartment and cisplatin-DNA-adduct formation. The findings may be applied in predicting the efficacy of nanoparticulate anticancer drug delivery systems in treating different tumor types.
Cancer Biology & Therapy | 2006
J. Helleman; K.N.J. Burger; Irene H.L. Hamelers; A.W.M. Boersma; A.I.P.M. de Kroon; G. Stoter; K. Nooter
The effectiveness of platinum drugs in the treatment of cancer is hindered by intrinsic and acquired resistance. The cause of clinical resistance to platinum compounds is still unknown. In an attempt to identify new cellular mechanisms of cisplatin resistance, a one-step cisplatin-selection procedure was used to generate resistant sublines of the platinum sensitive A2780 ovarian cancer cell line. In the present study we selected an A2780 subline, A2780-Pt, that has a significantly reduced ability to accumulate cisplatin (36% of the parent A2780 cell line) and consequently shows a clear cisplatin-resistant phenotype (resistance factor, i.e. RF: 8.6). The A2780-Pt cell line was specifically cross-resistant to carboplatin (RF: 12.0), tetraplatin (RF: 8.1) and oxaliplatin (RF: 6.1) which was associated with a reduced cellular platinum accumulation (50%, 54% and 58% of A2780, respectively). No cross-resistance was found for a variety of other anticancer agents.
Molecular Cancer Therapeutics | 2006
Irene H.L. Hamelers; Esther van Loenen; Rutger W.H.M. Staffhorst; Ben de Kruijff; Anton I.P.M. de Kroon
Platinum-based drugs are widely used in cancer chemotherapy. However, their clinical use is limited by systemic toxicity, rapid blood clearance, and the occurrence of resistance. Our research is aimed at increasing the therapeutic index of these drugs by encapsulation in a lipid formulation. Previously, we developed a method for efficient encapsulation of cisplatin in a lipid formulation, yielding cisplatin nanocapsules. Here, we show that carboplatin, a cisplatin-derived anticancer drug with different chemical properties, can be efficiently encapsulated in a lipid formulation by a similar method. The carboplatin nanocapsules exhibit a very high cytotoxicity in vitro: the IC50 value of carboplatin nanocapsules is up to a 1,000-fold lower than that of conventional carboplatin when tested on a panel of carcinoma cell lines. Cellular platinum content analysis and confocal fluorescent imaging of the interaction of the carboplatin nanocapsules with IGROV-1 cells indicate that the improved cytotoxicity is due to increased platinum accumulation in the cells, resulting from uptake of the formulation by endocytosis. [Mol Cancer Ther 2006;5(8):2007–12]
Cancer Cell International | 2003
Irene H.L. Hamelers; Richard van Schaik; John S. Sussenbach; Paul H. Steenbergh
BackgroundHuman MCF-7 cells have been studied extensively as a model for breast cancer cell growth. Many reports have established that serum-starved MCF-7 cells can be induced to proliferate upon the sole addition of 17β-estradiol (E2). However, the extent of the mitogenic response to E2 varies in different MCF-7 strains and may even be absent. In this study we compared the E2-sensitivity of three MCF-7 laboratory strains.ResultsThe MCF-7S line is non-responsive to E2, the MCF-7 ATCC has an intermediate response to E2, while the MCF-7 NKI is highly E2-sensitive, although the levels and activities of the estrogen receptor (ER) are not significantly different. Both suramin and IGF type I receptor blocking antibodies are able to inhibit the mitogenic response to E2-treatment in MCF-7 ATCC and MCF-7 NKI cells. From this we conclude that E2-induced proliferation is dependent on IGF type I receptor activation in all three MCF-7 strains.ConclusionsThe results presented in this article suggest that E2-responsiveness of MCF-7 cells is dependent on the secretion of an autocrine factor activating the IGF-IR. All three strains of MCF-7 breast cancer cells investigated do not respond to E2 if the IGF-RI-pathway is blocked. Generally, breast cancer therapy is targeted at inhibiting estrogen action. This study suggests that inhibition of IGF-action in combination with anti-estrogen-treatment may provide a more effective way in treatment or even prevention of breast cancer.
Anti-Cancer Drugs | 2008
Rutger W.H.M. Staffhorst; Kasper van der Born; Caroline A.M. Erkelens; Irene H.L. Hamelers; Godefridus J. Peters; Epie Boven; Anton I.P.M. de Kroon
Cisplatin nanocapsules represent a novel lipid formulation of the anticancer drug cis-diamminedichloridoplatinum(II) (cisplatin), characterized by an unprecedented cisplatin-to-lipid molar ratio, and exhibiting strongly increased in-vitro cytotoxicity compared with the free drug. In this study, antitumor efficacy and biodistribution of PEGylated cisplatin nanocapsules were compared with those of the free drug in a mouse tumor model. Nude mice bearing human ovarian carcinoma OVCAR-3 xenografts were treated twice with a 1-week interval by intravenous administration of cisplatin nanocapsules or cisplatin in solution, and the growth inhibitory effects were determined by measurement of tumor volumes. At a dose of 3 mg cisplatin/kg, corresponding to the maximum tolerated dose of cisplatin nanocapsules, cisplatin nanocapsules and cisplatin in solution exhibited similar therapeutic effectiveness, reducing tumor growth by 90% at day 20 after first injection. The platinum biodistribution was assayed by analyzing plasma and tissues for total platinum content by nonflame atomic absorption spectroscopy. Plasma and tumor concentrations of platinum were similar for both formulations. During the first hour after injection of cisplatin nanocapsules, the platinum content of the kidney was 40% less than that after administering the free drug. Platinum from nanocapsules showed rapid and 4.5-fold higher accumulation in the liver compared with free cisplatin, and, at a slower rate, accumulation to a high concentration in the spleen. We conclude that the formulation of cisplatin nanocapsules inhibits the growth of OVCAR-3 xenografts in nude mice, albeit to a similar extent as free cisplatin. The results suggest that the antitumor efficacy of the nanocapsules could be improved by preventing rapid clearance from circulation.
Journal of Liposome Research | 2007
Irene H.L. Hamelers; Anton I.P.M. de Kroon
Platinum-based anti-cancer agents have been used for many years to treat many different types of cancer. However, the efficacy of these drugs is limited by serious side effects. One of the strategies to reduce the side effects is encapsulation of the drug in a lipid formulation. Recently, we discovered a novel method for the efficient encapsulation of cisplatin in a lipid formulation. The method is unique in that it does not generate conventional liposomes but nanocapsules: small aggregates of solid cisplatin covered by a lipid bilayer. Also carboplatin, a cisplatin-derived anti-cancer drug with different chemical properties, can be efficiently encapsulated by a similar method. The encapsulation in nanocapsules dramatically improves the in vitro cytotoxicity of the platinum drugs. Our results hold the promise that the nanocapsule technology could prove successful in the efficient encapsulation of many other (platinum-based) drugs, and thereby improve their therapeutic index and profile in vivo.
Microvascular Research | 2009
Michal Heger; Isabelle I. Salles; Wiebe van Vuure; Irene H.L. Hamelers; Anton I.P.M. de Kroon; Hans Deckmyn; Johan F. Beek
Polyethylene glycol (PEG)-grafted phosphatidylcholine liposomes are used as drug carriers due to their low immunogenicity and prolonged circulation time. The interaction between sterically stabilized lecithin liposomes and platelets has not been investigated before, and deserves to be subjected to scrutiny inasmuch as the uptake of liposomes by platelets could be detrimental for drug delivery and primary hemostasis. Consequently, the interaction between resting and convulxin-activated hamster and human platelets and calcein- or 5,6-carboxyfluorescein-encapsulating PEGylated liposomes composed of distearoyl- and dipalmitoyl phosphatidylcholine and PEG-derivatized distearoyl phosphatidylethanolamine was investigated by flow cytometry, confocal microscopy, and a glass capillary thrombosis model. Fluorescently labeled liposomes of the same composition were subsequently assayed in vivo after 15 and 45 min of systemic circulation. Neither resting nor activated hamster and human platelets interacted with liposomes at 0.70 mM lipid concentration. An absence of any interaction was corroborated in the in vivo experiments. Alternatively, flow cytometry assays evinced that human platelets interact with liposomes at lipid concentrations of >or=1.35 mM. These interactions were more profound for activated platelets than resting platelets. We conclude that the use of PEGylated lecithin liposomes at lipid concentrations of <1.35 mM has no detrimental impact on liposomal drug delivery based on PEGylated lecithin liposomes, but that these drug carriers may be associated with a reduced targeting efficacy or compromised primary hemostatic system when used at concentrations of >or=1.35 mM. In contrast, these drug carriers may become valuable in thrombosis- and drug delivery-related research and applications at concentrations of >or=1.35 mM.
Archive | 2009
Irene H.L. Hamelers; Anton I.P.M. de Kroon
One of the strategies to reduce the side effects of platinum anticancer drugs is encapsulation of the drug in a lipid formulation. Nanocapsules represent a novel lipid-based drug delivery system, with high encapsulation efficiencies of cisplatin and carboplatin. The encapsulation in nanocapsules, dramatically improves the in vitro cytotoxicity of the platinum drugs towards carcinoma cell lines. The nanocapsule technology may generally be applicable to platinum drugs with limited water solubility and low lipophilicity, and improve the therapeutic index and profile of these drugs.
Journal of Endocrinology | 2000
B Dufourny; H.A.A.M. van Teeffelen; Irene H.L. Hamelers; John S. Sussenbach; Paul H. Steenbergh
Journal of Biological Chemistry | 2002
Irene H.L. Hamelers; Richard van Schaik; Jorrit Sipkema; John S. Sussenbach; Paul H. Steenbergh