Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene M. Gamba is active.

Publication


Featured researches published by Irene M. Gamba.


Journal of Statistical Physics | 2000

On Some Properties of Kinetic and Hydrodynamic Equations for Inelastic Interactions

Alexander Bobylev; José A. Carrillo; Irene M. Gamba

We investigate a Boltzmann equation for inelastic scattering in which the relative velocity in the collision frequency is approximated by the thermal speed. The inelasticity is given by a velocity variable restitution coefficient. This equation is the analog to the Boltzmann classical equation for Maxwellian molecules. We study the homogeneous regime using Fourier analysis methods. We analyze the existence and uniqueness questions, the linearized operator around the Dirac delta function, self-similar solutions and moment equations. We clarify the conditions under which self-similar solutions describe the asymptotic behavior of the homogeneous equation. We obtain formally a hydrodynamic description for near elastic particles under the assumption of constant and variable restitution coefficient. We describe the linear long-wave stability/instability for homogeneous cooling states.


Journal of Computational Physics | 2003

A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices: performance and comparisons with Monte Carlo methods

José A. Carrillo; Irene M. Gamba; Armando Majorana; Chi-Wang Shu

In this paper we develop a deterministic high order accurate finite-difference WENO solver to the solution of the 1-D Boltzmann-Poisson system for semiconductor devices. We follow the work in Fatemi and Odeh [9] and in Majorana and Pidatella [16] to formulate the Boltzmann-Poisson system in a spherical coordinate system using the energy as one of the coordinate variables, thus reducing the computational complexity to two dimensions in phase space and dramatically simplifying the evaluations of the collision terms. The solver is accurate in time hence potentially useful for time-dependent simulations, although in this paper we only test it for steady-state devices. The high order accuracy and nonoscillatory properties of the solver allow us to use very coarse meshes to get a satisfactory resolution, thus making it feasible to develop a 2-D solver (which will be five dimensional plus time when the phase space is discretized) on todays computers. The computational results have been compared with those by a Monte Carlo simulation and excellent agreements have been found. The advantage of the current solver over a Monte Carlo solver includes its faster speed, noise-free resolution, and easiness for arbitrary moment evaluations. This solver is thus a useful benchmark to check on the physical validity of various hydrodynamic and energy transport models. Some comparisons have been included in this paper.


Journal of Statistical Physics | 2004

Moment Inequalities and High-Energy Tails for Boltzmann Equations with Inelastic Interactions

Alexander Bobylev; Irene M. Gamba; Vladislav Panferov

We study high-energy asymptotics of the steady velocity distributions for model kinetic equations describing various regimes in dilute granular flows. The main results obtained are integral estimates of solutions of the Boltzmann equation for inelastic hard spheres, which imply that steady velocity distributions behave in a certain sense as C exp(−r∣v∣s), for ∣v∣ large. The values of s, which we call the orders of tails, range from s = 1 to s = 2, depending on the model of external forcing. To obtain these results we establish precise estimates for exponential moments of solutions, using a sharpened version of the Povzner-type inequalities.


Communications in Mathematical Physics | 2004

On the Boltzmann Equation for Diffusively Excited Granular Media

Irene M. Gamba; Vladislav Panferov; Cédric Villani

We study the Boltzmann equation for a space-homogeneous gas of inelastic hard spheres, with a diffusive term representing a random background forcing. Under the assumption that the initial datum is a nonnegative L2(N) function, with bounded mass and kinetic energy (second moment), we prove the existence of a solution to this model, which instantaneously becomes smooth and rapidly decaying. Under a weak additional assumption of bounded third moment, the solution is shown to be unique. We also establish the existence (but not uniqueness) of a stationary solution. In addition we show that the high-velocity tails of both the stationary and time-dependent particle distribution functions are overpopulated with respect to the Maxwellian distribution, as conjectured by previous authors, and we prove pointwise lower estimates for the solutions.


Journal of Computational Physics | 2012

A discontinuous Galerkin method for the Vlasov-Poisson system

R. E. Heath; Irene M. Gamba; P. J. Morrison; Christian Michler

A discontinuous Galerkin method for approximating the Vlasov-Poisson system of equations describing the time evolution of a collisionless plasma is proposed. The method is mass conservative and, in the case that piecewise constant functions are used as a basis, the method preserves the positivity of the electron distribution function and weakly enforces continuity of the electric field through mesh interfaces and boundary conditions. The performance of the method is investigated by computing several examples and error estimates of the approximation are stated. In particular, computed results are benchmarked against established theoretical results for linear advection and the phenomenon of linear Landau damping for both the Maxwell and Lorentz distributions. Moreover, two nonlinear problems are considered: nonlinear Landau damping and a version of the two-stream instability are computed. For the latter, fine scale details of the resulting long-time BGK-like state are presented. Conservation laws are examined and various comparisons to theory are made. The results obtained demonstrate that the discontinuous Galerkin method is a viable option for integrating the Vlasov-Poisson system.


Journal of Computational Physics | 2009

Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states

Irene M. Gamba; Sri Harsha Tharkabhushanam

We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S^d^-^1. The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously cooling and heated granular fluids, Granular Matter 1(57) (1998); M.H. Ernst, R. Brito, Scaling solutions of inelastic Boltzmann equations with over-populated high energy tails, Journal of Statistical Physics 109 (2002) 407-432; S.J. Moon, M.D. Shattuck, J. Swift, Velocity distributions and correlations in homogeneously heated granular media, Physical Review E 64 (2001) 031303; I.M. Gamba, S. Rjasanow, W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation, Mathematical and Computer Modelling 42 (2005) 683-700] and rigorously proven in Gamba et al. [I.M. Gamba, V. Panferov, C. Villani, On the Boltzmann equation for diffusively excited granular media, Communications in Mathematical Physics 246 (2004) 503-541(39)] and [A.V. Bobylev, I.M. Gamba, V. Panferov, Moment inequalities and high-energy tails for Boltzmann equations with inelastic interactions, Journal of Statistical Physics 116 (2004) 1651-1682].


Journal of Computational Physics | 2006

2D semiconductor device simulations by WENO-Boltzmann schemes: Efficiency, boundary conditions and comparison to Monte Carlo methods

José A. Carrillo; Irene M. Gamba; Armando Majorana; Chi-Wang Shu

We develop and demonstrate the capability of a high-order accurate finite difference weighted essentially non-oscillatory (WENO) solver for the direct numerical simulation of transients for a two space dimensional Boltzmann transport equation (BTE) coupled with the Poisson equation modelling semiconductor devices such as the MESFET and MOSFET. We compare the simulation results with those obtained by a direct simulation Monte Carlo solver for the same geometry. The main goal of this work is to benchmark and clarify the implementation of boundary conditions for both, deterministic and Monte Carlo numerical schemes modelling these devices, to explain the boundary singularities for both the electric field and mean velocities associated to the solution of the transport equation, and to demonstrate the overall excellent behavior of the deterministic code through the good agreement between the Monte Carlo results and the coarse grid results of the deterministic WENO-BTE scheme.


Journal of Mathematical Physics | 2002

Coupling one-dimensional time-dependent classical and quantum transport models

N. Ben Abdallah; Pierre Degond; Irene M. Gamba

A transient model for one-dimensional charge transport in an open quantum system is proposed. In the semiclassical limit, it reduces to the inflow boundary value problem for the classical transport equation. On this basis, the coupling of classical and quantum transport models through an interface is investigated. Suitable interface conditions are derived through asymptotic formulas involving the quantum reflection–transmission coefficients and time delays.


Journal of Statistical Physics | 2006

Boltzmann Equations For Mixtures of Maxwell Gases: Exact Solutions and Power Like Tails

Alexander Bobylev; Irene M. Gamba

We consider the Boltzmann equations for mixtures of Maxwell gases. It is shown that in certain limiting case the equations admit self-similar solutions that can be constructed in explicit form. More precisely, the solutions have simple explicit integral representations. The most interesting solutions have finite energy and power like tails. This shows that power like tails can appear not just for granular particles (Maxwell models are far from reality in this case), but also in the system of particles interacting in accordance with laws of classical mechanics. In addition, non-existence of positive self-similar solutions with finite moments of any order is proven for a wide class of Maxwell models.


Journal of Scientific Computing | 2013

Study of conservation and recurrence of Runge---Kutta discontinuous Galerkin schemes for Vlasov---Poisson systems

Yingda Cheng; Irene M. Gamba; P. J. Morrison

In this paper we consider Runge–Kutta discontinuous Galerkin (RKDG) schemes for Vlasov–Poisson systems that model collisionless plasmas. One-dimensional systems are emphasized. The RKDG method, originally devised to solve conservation laws, is seen to have excellent conservation properties, be readily designed for arbitrary order of accuracy, and capable of being used with a positivity-preserving limiter that guarantees positivity of the distribution functions. The RKDG solver for the Vlasov equation is the main focus, while the electric field is obtained through the classical representation by Green’s function for the Poisson equation. A rigorous study of recurrence of the DG methods is presented by Fourier analysis, and the impact of different polynomial spaces and the positivity-preserving limiters on the quality of the solutions is ascertained. Several benchmark test problems, such as Landau damping, the two-stream instability, and the Kinetic Electro static Electron Nonlinear wave, are given.

Collaboration


Dive into the Irene M. Gamba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingda Cheng

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Haack

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenglong Zhang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Pia Gualdani

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge