Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene Miguel-Aliaga is active.

Publication


Featured researches published by Irene Miguel-Aliaga.


Annual Review of Genetics | 2013

The Digestive Tract of Drosophila melanogaster

Bruno Lemaitre; Irene Miguel-Aliaga

The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.


Cell Metabolism | 2011

Enteric Neurons and Systemic Signals Couple Nutritional and Reproductive Status with Intestinal Homeostasis

Paola Cognigni; Andrew P. Bailey; Irene Miguel-Aliaga

Summary The gastrointestinal tract is emerging as a key regulator of appetite and metabolism, but daunting neuroanatomical complexity has hampered identification of the relevant signals. Invertebrate models could provide a simple and genetically amenable alternative, but their autonomic nervous system and its visceral functions remain largely unexplored. Here we develop a quantitative method based on defecation behavior to uncover a central role for the Drosophila intestine in the regulation of nutrient intake, fluid, and ion balance. We then identify a key homeostatic role for autonomic neurons and hormones, including a brain-gut circuit of insulin-producing neurons modulating appetite, a vasopressin-like system essential for fluid homeostasis, and enteric neurons mediating sex peptide-induced changes in intestinal physiology. These conserved mechanisms of visceral control, analogous to those found in the enteric nervous system and hypothalamic/pituitary axis, enable the study of autonomic control in a model organism that has proved instrumental in understanding sensory and motor systems.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A fluorescent reporter of caspase activity for live imaging

Pierre-Luc Bardet; Golnar Kolahgar; Anita Mynett; Irene Miguel-Aliaga; James Briscoe; Pascal Meier; Jean-Paul Vincent

There is a growing interest in the mechanisms that control the apoptosis cascade during development and adult life. To investigate the regulatory events that trigger apoptosis in whole tissues, we have devised a genetically encoded caspase sensor that can be detected in live and fixed tissue by standard confocal microscopy. The sensor comprises two fluorophores, mRFP, monomeric red fluorescent protein (mRFP) and enhanced green fluorescent protein (eGFP), that are linked by an efficient and specific caspase-sensitive site. Upon caspase activation, the sensor is cleaved and eGFP translocates to the nucleus, leaving mRFP at membranes. This is detected before other markers of apoptosis, including anti–cleaved caspase 3 immunoreactivity. Moreover, the sensor does not perturb normal developmental apoptosis and is specific, as cleavage does not occur in Drosophila embryos that are unable to activate the apoptotic cascade. Importantly, dying cells can be recognized in live embryos, thus opening the way for in vivo imaging. As expected from the high conservation of caspases, it is also cleaved in dying cells of chick embryos. It is therefore likely to be generally useful to track the spatiotemporal pattern of caspase activity in a variety of species.


Development | 2004

Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity

Irene Miguel-Aliaga; Stefan Thor

In vertebrates, neurons often undergo apoptosis after differentiating and extending their axons. By contrast, in the developing nervous system of invertebrate embryos apoptosis typically occurs soon after cells are generated. Here, we show that the Drosophila dMP2 and MP1 pioneer neurons undergo segment-specific apoptosis at late embryonic stages, long after they have extended their axons and have performed their pioneering role in guiding follower axons. This segmental specificity is achieved by differential expression of the Hox gene Abdominal B, which in posterior segments prevents pioneer neuron death postmitotically and cell-autonomously by repressing the RHG-motif cell death activators reaper and grim. Our results identify the first clear case of a cell-autonomous and anti-apoptotic role for a Hox gene in vivo. In addition, they provide a novel mechanism linking Hox positional information to differences in neuronal architecture along the anteroposterior axis by the selective elimination of mature neurons.


PLOS Biology | 2008

Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons.

Irene Miguel-Aliaga; Stefan Thor; Alex P. Gould

Insulin and related peptides play important and conserved functions in growth and metabolism. Although Drosophila has proved useful for the genetic analysis of insulin functions, little is known about the transcription factors and cell lineages involved in insulin production. Within the embryonic central nervous system, the MP2 neuroblast divides once to generate a dMP2 neuron that initially functions as a pioneer, guiding the axons of other later-born embryonic neurons. Later during development, dMP2 neurons in anterior segments undergo apoptosis but their posterior counterparts persist. We show here that surviving posterior dMP2 neurons no longer function in axonal scaffolding but differentiate into neuroendocrine cells that express insulin-like peptide 7 (Ilp7) and innervate the hindgut. We find that the postmitotic transition from pioneer to insulin-producing neuron is a multistep process requiring retrograde bone morphogenetic protein (BMP) signalling and four transcription factors: Abdominal-B, Hb9, Fork Head, and Dimmed. These five inputs contribute in a partially overlapping manner to combinatorial codes for dMP2 apoptosis, survival, and insulinergic differentiation. Ectopic reconstitution of this code is sufficient to activate Ilp7 expression in other postmitotic neurons. These studies reveal striking similarities between the transcription factors regulating insulin expression in insect neurons and mammalian pancreatic beta-cells.


Development | 2004

Independent roles of the dachshund and eyes absent genes in BMP signaling, axon pathfinding and neuronal specification.

Irene Miguel-Aliaga; Douglas W. Allan; Stefan Thor

In the Drosophila nerve cord, a subset of neurons expresses the neuropeptide FMRFamide related (Fmrf). Fmrf expression is controlled by a combinatorial code of intrinsic factors and an extrinsic BMP signal. However, this previously identified code does not fully explain the regulation of Fmrf. We have found that the Dachshund (Dac) and Eyes Absent (Eya) transcription co-factors participate in this combinatorial code. Previous studies have revealed an intimate link between Dac and Eya during eye development. Here, by analyzing their function in neurons with multiple phenotypic markers, we demonstrate that they play independent roles in neuronal specification, even within single cells. dac is required for high-level Fmrf expression, and acts potently together with apterous and BMP signaling to trigger Fmrf expression ectopically, even in motoneurons. By contrast, eya regulates Fmrf expression by controlling both axon pathfinding and BMP signaling, but cannot trigger Fmrf ectopically. Thus, we show that dac and eya perform entirely different functions in a single cell type to ultimately regulate a single phenotypic outcome.


eLife | 2015

Endocrine remodelling of the adult intestine sustains reproduction in Drosophila

Tobias Reiff; Jake Jacobson; Paola Cognigni; Zeus A. Antonello; Esther Ballesta; Kah Junn Tan; Joanne Y. Yew; M.I. Domínguez; Irene Miguel-Aliaga

The production of offspring is energetically costly and relies on incompletely understood mechanisms that generate a positive energy balance. In mothers of many species, changes in key energy-associated internal organs are common yet poorly characterised functionally and mechanistically. In this study, we show that, in adult Drosophila females, the midgut is dramatically remodelled to enhance reproductive output. In contrast to extant models, organ remodelling does not occur in response to increased nutrient intake and/or offspring demands, but rather precedes them. With spatially and temporally directed manipulations, we identify juvenile hormone (JH) as an anticipatory endocrine signal released after mating. Acting through intestinal bHLH-PAS domain proteins Methoprene-tolerant (Met) and Germ cell-expressed (Gce), JH signals directly to intestinal progenitors to yield a larger organ, and adjusts gene expression and sterol regulatory element-binding protein (SREBP) activity in enterocytes to support increased lipid metabolism. Our findings identify a metabolically significant paradigm of adult somatic organ remodelling linking hormonal signals, epithelial plasticity, and reproductive output. DOI: http://dx.doi.org/10.7554/eLife.06930.001


Nature | 2016

The sexual identity of adult intestinal stem cells controls organ size and plasticity

Bruno Hudry; Sanjay Khadayate; Irene Miguel-Aliaga

Sex differences in physiology and disease susceptibility are commonly attributed to developmental and/or hormonal factors, but there is increasing realization that cell-intrinsic mechanisms play important and persistent roles. Here we use the Drosophila melanogaster intestine to investigate the nature and importance of cellular sex in an adult somatic organ in vivo. We find that the adult intestinal epithelium is a cellular mosaic of different sex differentiation pathways, and displays extensive sex differences in expression of genes with roles in growth and metabolism. Cell-specific reversals of the sexual identity of adult intestinal stem cells uncovers the key role this identity has in controlling organ size, reproductive plasticity and response to genetically induced tumours. Unlike previous examples of sexually dimorphic somatic stem cell activity, the sex differences in intestinal stem cell behaviour arise from intrinsic mechanisms that control cell cycle duration and involve a new doublesex- and fruitless-independent branch of the sex differentiation pathway downstream of transformer. Together, our findings indicate that the plasticity of an adult somatic organ is reversibly controlled by its sexual identity, imparted by a new mechanism that may be active in more tissues than previously recognized.


Cell | 2014

Neuronal Control of Metabolism through Nutrient-Dependent Modulation of Tracheal Branching

Gerit A. Linneweber; Jake Jacobson; Karl Emanuel Busch; Bruno Hudry; Christo P. Christov; Dirk Dormann; Michaela Yuan; Tomoki Otani; Elisabeth Knust; Mario de Bono; Irene Miguel-Aliaga

Summary During adaptive angiogenesis, a key process in the etiology and treatment of cancer and obesity, the vasculature changes to meet the metabolic needs of its target tissues. Although the cues governing vascular remodeling are not fully understood, target-derived signals are generally believed to underlie this process. Here, we identify an alternative mechanism by characterizing the previously unrecognized nutrient-dependent plasticity of the Drosophila tracheal system: a network of oxygen-delivering tubules developmentally akin to mammalian blood vessels. We find that this plasticity, particularly prominent in the intestine, drives—rather than responds to—metabolic change. Mechanistically, it is regulated by distinct populations of nutrient- and oxygen-responsive neurons that, through delivery of both local and systemic insulin- and VIP-like neuropeptides, sculpt the growth of specific tracheal subsets. Thus, we describe a novel mechanism by which nutritional cues modulate neuronal activity to give rise to organ-specific, long-lasting changes in vascular architecture.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila

Aaron D. Talsma; Christo P. Christov; Ana Terriente-Felix; Gerit A. Linneweber; Daniel Perea; Matthew T. Wayland; Orie T. Shafer; Irene Miguel-Aliaga

The role of the central neuropeptide pigment-dispersing factor (PDF) in circadian timekeeping in Drosophila is remarkably similar to that of vasoactive intestinal peptide (VIP) in mammals. Like VIP, PDF is expressed outside the circadian network by neurons innervating the gut, but the function and mode of action of this PDF have not been characterized. Here we investigate the visceral roles of PDF by adapting cellular and physiological methods to the study of visceral responses to PDF signaling in wild-type and mutant genetic backgrounds. We find that intestinal PDF acts at a distance on the renal system, where it regulates ureter contractions. We show that PdfR, PDFs established receptor, is expressed by the muscles of the excretory system, and present evidence that PdfR-induced cAMP increases underlie the myotropic effects of PDF. These findings extend the similarities between PDF and VIP beyond their shared central role as circadian regulators, and uncover an unexpected endocrine mode of myotropic action for an intestinal neuropeptide on the renal system.

Collaboration


Dive into the Irene Miguel-Aliaga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerit A. Linneweber

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bruno Hudry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Perea

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Fabre

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge