Irene Puga
Yeshiva University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irene Puga.
Nature Immunology | 2012
Irene Puga; Montserrat Cols; Carolina M. Barra; Bing-Yang He; Linda Cassis; Maurizio Gentile; Laura Comerma; Alejo Chorny; Meimei Shan; Weifeng Xu; Giuliana Magri; Daniel M. Knowles; Wayne Tam; April Chiu; James B. Bussel; Sergi Serrano; José A. Lorente; Beatriz Bellosillo; Josep Lloreta; Nuria Juanpere; Francesc Alameda; Teresa Baró; Cristina Díaz de Heredia; Nuria Toran; Albert Catala; Montserrat Torrebadell; Clàudia Fortuny; Victoria Cusí; Carmen Carreras; George A. Diaz
Neutrophils utilize immunoglobulins (Igs) to clear antigen, but their role in Ig production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T-independent Ig responses to circulating antigen. Neutrophils colonized peri-MZ areas after post-natal mucosal colonization by microbes and enhanced their B-helper function upon receiving reprogramming signals from splenic sinusoidal endothelial cells, including interleukin 10 (IL-10). Splenic neutrophils induced Ig class switching, somatic hypermutation and antibody production by activating MZ B cells through a mechanism involving the cytokines BAFF, APRIL and IL-21. Neutropenic patients had fewer and hypomutated MZ B cells and less preimmune Igs to T-independent antigens, which indicates that neutrophils generate an innate layer of antimicrobial Ig defense by interacting with MZ B cells.Neutrophils use immunoglobulins to clear antigen, but their role in immunoglobulin production is unknown. Here we identified neutrophils around the marginal zone (MZ) of the spleen, a B cell area specialized in T cell–independent immunoglobulin responses to circulating antigen. Neutrophils colonized peri-MZ areas after postnatal mucosal colonization by microbes and enhanced their B cell–helper function after receiving reprogramming signals, including interleukin 10 (IL-10), from splenic sinusoidal endothelial cells. Splenic neutrophils induced immunoglobulin class switching, somatic hypermutation and antibody production by activating MZ B cells through a mechanism that involved the cytokines BAFF, APRIL and IL-21. Neutropenic patients had fewer and hypomutated MZ B cells and a lower abundance of preimmune immunoglobulins to T cell–independent antigens, which indicates that neutrophils generate an innate layer of antimicrobial immunoglobulin defense by interacting with MZ B cells.
Nature Immunology | 2010
Bing He; Raul Santamaria; Weifeng Xu; Montserrat Cols; Kang Chen; Irene Puga; Meimei Shan; Huabao Xiong; James B. Bussel; April Chiu; Anne Puel; Jeanine Reichenbach; László Maródi; Rainer Doffinger; Júlia Vasconcelos; Andrew C. Issekutz; Jens Krause; Graham Davies; Xiaoxia Li; Bodo Grimbacher; Alessandro Plebani; Eric Meffre; Capucine Picard; Charlotte Cunningham-Rundles; Jean-Laurent Casanova; Andrea Cerutti
BAFF and APRIL are innate immune mediators that trigger immunoglobulin (Ig) G and IgA class switch recombination (CSR) in B cells by engaging the receptor TACI. The mechanism underlying CSR signaling by TACI remains unknown. Here, we found that the cytoplasmic domain of TACI encompasses a conserved motif that bound MyD88, an adaptor protein that activates NF-κB signaling pathways via a Toll-interleukin-1 receptor (TIR) domain. TACI lacks a TIR domain, yet triggered CSR via the DNA-editing enzyme AID by activating NF-κB through a TLR-like MyD88–IRAK-1-IRAK-4–TRAF6–TAK1 pathway. TACI-induced CSR was impaired in mice and humans lacking MyD88 or IRAK-4, indicating that MyD88 controls a B cell-intrinsic, TIR-independent, TACI-dependent pathway for Ig diversification.BAFF and APRIL are innate immune mediators that trigger immunoglobulin G (IgG) and IgA class-switch recombination (CSR) in B cells by engaging the receptor TACI. The mechanism that underlies CSR signaling by TACI remains unknown. Here we found that the cytoplasmic domain of TACI encompasses a conserved motif that bound MyD88, an adaptor that activates transcription factor NF-κB signaling pathways via a Toll–interleukin 1 (IL-1) receptor (TIR) domain. TACI lacks a TIR domain, yet triggered CSR via the DNA-editing enzyme AID by activating NF-κB through a Toll-like receptor (TLR)-like MyD88-IRAK1-IRAK4-TRAF6-TAK1 pathway. TACI-induced CSR was impaired in mice and humans lacking MyD88 or the kinase IRAK4, which indicates that MyD88 controls a B cell–intrinsic, TIR-independent, TACI-dependent pathway for immunoglobulin diversification.
Nature Immunology | 2014
Giuliana Magri; Michio Miyajima; Sabrina Bascones; Arthur Mortha; Irene Puga; Linda Cassis; Carolina M. Barra; Laura Comerma; Aleksey Chudnovskiy; Maurizio Gentile; David Lligé; Montserrat Cols; Sergi Serrano; Juan I. Aróstegui; Manel Juan; Jordi Yagüe; Miriam Merad; Sidonia Fagarasan; Andrea Cerutti
Innate lymphoid cells (ILCs) regulate stromal cells, epithelial cells and cells of the immune system, but their effect on B cells remains unclear. Here we identified RORγt+ ILCs near the marginal zone (MZ), a splenic compartment that contains innate-like B cells highly responsive to circulating T cell–independent (TI) antigens. Splenic ILCs established bidirectional crosstalk with MAdCAM-1+ marginal reticular cells by providing tumor-necrosis factor (TNF) and lymphotoxin, and they stimulated MZ B cells via B cell–activation factor (BAFF), the ligand of the costimulatory receptor CD40 (CD40L) and the Notch ligand Delta-like 1 (DLL1). Splenic ILCs further helped MZ B cells and their plasma-cell progeny by coopting neutrophils through release of the cytokine GM-CSF. Consequently, depletion of ILCs impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune system and circulatory system.
Journal of Immunology | 2012
Montserrat Cols; Carolina M. Barra; Bing He; Irene Puga; Weifeng Xu; April Chiu; Wayne Tam; Daniel M. Knowles; Stacey R. Dillon; John P. Leonard; Richard R. Furman; Kang Chen; Andrea Cerutti
Chronic lymphocytic leukemia (CLL) is a clonal B cell disorder of unknown origin. Accessory signals from the microenvironment are critical for the survival, expansion, and progression of malignant B cells. We found that the CLL stroma included microvascular endothelial cells (MVECs) expressing BAFF and APRIL, two TNF family members related to the T cell-associated B cell-stimulating molecule CD40L. Constitutive release of soluble BAFF and APRIL increased upon engagement of CD40 on MVECs by CD40L aberrantly expressed on CLL cells. In addition to enhancing MVEC expression of CD40, leukemic CD40L induced cleavases that elicited intracellular processing of pro-BAFF and pro-APRIL proteins in MVECs. The resulting soluble BAFF and APRIL proteins delivered survival, activation, Ig gene remodeling, and differentiation signals by stimulating CLL cells through TACI, BAFF-R, and BCMA receptors. BAFF and APRIL further amplified CLL cell survival by upregulating the expression of leukemic CD40L. Inhibition of TACI, BCMA, and BAFF-R expression on CLL cells; abrogation of CD40 expression in MVECs; or suppression of BAFF and APRIL cleavases in MVECs reduced the survival and diversification of malignant B cells. These data indicate that BAFF, APRIL, and CD40L form a CLL-enhancing bidirectional signaling network linking neoplastic B cells with the microvascular stroma.
Journal of Immunology | 2014
Cindy Gutzeit; Noémi M. Nagy; Maurizio Gentile; Katarina Lyberg; Janine Gumz; Helen Vallhov; Irene Puga; Eva Klein; Susanne Gabrielsson; Andrea Cerutti; Annika Scheynius
Exosomes, nano-sized membrane vesicles, are released by various cells and are found in many human body fluids. They are active players in intercellular communication and have immune-suppressive, immune-regulatory, and immune-stimulatory functions. EBV is a ubiquitous human herpesvirus that is associated with various lymphoid and epithelial malignancies. EBV infection of B cells in vitro induces the release of exosomes that harbor the viral latent membrane protein 1 (LMP1). LMP1 per se mimics CD40 signaling and induces proliferation of B lymphocytes and T cell–independent class-switch recombination. Constitutive LMP1 signaling within B cells is blunted through the shedding of LMP1 via exosomes. In this study, we investigated the functional effect of exosomes derived from the DG75 Burkitt’s lymphoma cell line and its sublines (LMP1 transfected and EBV infected), with the hypothesis that they might mimic exosomes released during EBV-associated diseases. We show that exosomes released during primary EBV infection of B cells harbored LMP1, and similar levels were detected in exosomes from LMP1-transfected DG75 cells. DG75 exosomes efficiently bound to human B cells within PBMCs and were internalized by isolated B cells. In turn, this led to proliferation, induction of activation-induced cytidine deaminase, and the production of circle and germline transcripts for IgG1 in B cells. Finally, exosomes harboring LMP1 enhanced proliferation and drove B cell differentiation toward a plasmablast-like phenotype. In conclusion, our results suggest that exosomes released from EBV-infected B cells have a stimulatory capacity and interfere with the fate of human B cells.
Annals of the New York Academy of Sciences | 2011
Andrea Cerutti; Montserrat Cols; Maurizio Gentile; Linda Cassis; Carolina M. Barra; Bing He; Irene Puga; Kang Chen
Adaptive co‐evolution of mammals and bacteria has led to the establishment of complex commensal communities on mucosal surfaces. In spite of having available a wealth of immune‐sensing and effector mechanisms capable of triggering inflammation in response to microbial intrusion, mucosal immune cells establish an intimate dialogue with microbes to generate a state of hyporesponsiveness against commensals and active readiness against pathogens. A key component of this homeostatic balance is IgA, a noninflammatory antibody isotype produced by mucosal B cells through class switching. This process involves activation of B cells by IgA‐inducing signals originating from mucosal T cells, dendritic cells, and epithelial cells. Here, we review the mechanisms by which mucosal B cells undergo IgA diversification and production and discuss how the study of primary immunodeficiencies facilitates better understanding of mucosal IgA responses in humans.
Journal of Leukocyte Biology | 2013
Andrea Cerutti; Irene Puga; Giuliana Magri
Neutrophils use opsonizing antibodies to enhance the clearance of intruding microbes. Recent studies indicate that splenic neutrophils also induce antibody production by providing helper signals to B cells lodged in the MZ of the spleen. Here, we discuss the B cell helper function of neutrophils in the context of growing evidence indicating that neutrophils function as sophisticated regulators of innate and adaptive immune responses.
Journal of Experimental Medicine | 2016
Alejo Chorny; Sandra Casas-Recasens; Jordi Sintes; Meimei Shan; Nadia Polentarutti; Ramón García-Escudero; A. Cooper Walland; John R. Yeiser; Linda Cassis; Jorge Carrillo; Irene Puga; Cristina Cunha; Helder Novais e Bastos; Fernando Rodrigues; João F. Lacerda; António Morais; Rebeca Dieguez-Gonzalez; Peter S. Heeger; Giovanni Salvatori; Agostinho Carvalho; Adolfo García-Sastre; J. Magarian Blander; Alberto Mantovani; Cecilia Garlanda; Andrea Cerutti
Cerutti and collaborators show that the humoral arms of the innate and adaptive immune systems are functionally interconnected by pentraxin 3, a soluble pattern recognition receptor that couples innate immune recognition with antibody-inducing function.
Nature Communications | 2017
Jordi Sintes; Maurizio Gentile; Shuling Zhang; Yolanda Garcia-Carmona; Giuliana Magri; Linda Cassis; Daniel Segura-Garzón; Alessandra Ciociola; Emilie K. Grasset; Sabrina Bascones; Laura Comerma; Marc Pybus; David Lligé; Irene Puga; Cindy Gutzeit; Bing He; Wendy Dubois; Marta Crespo; Julio Pascual; Anna Mensa; Juan I. Aróstegui; Manel Juan; Jordi Yagüe; Sergi Serrano; Josep Lloreta; Eric Meffre; Michael Hahne; Charlotte Cunningham-Rundles; Beverly A. Mock; Andrea Cerutti
Mechanistic target of rapamycin (mTOR) enhances immunity in addition to orchestrating metabolism. Here we show that mTOR coordinates immunometabolic reconfiguration of marginal zone (MZ) B cells, a pre-activated lymphocyte subset that mounts antibody responses to T-cell-independent antigens through a Toll-like receptor (TLR)-amplified pathway involving transmembrane activator and CAML interactor (TACI). This receptor interacts with mTOR via the TLR adapter MyD88. The resulting mTOR activation instigates MZ B-cell proliferation, immunoglobulin G (IgG) class switching, and plasmablast differentiation through a rapamycin-sensitive pathway that integrates metabolic and antibody-inducing transcription programs, including NF-κB. Disruption of TACI–mTOR interaction by rapamycin, truncation of the MyD88-binding domain of TACI, or B-cell-conditional mTOR deficiency interrupts TACI signaling via NF-κB and cooperation with TLRs, thereby hampering IgG production to T-cell-independent antigens but not B-cell survival. Thus, mTOR drives innate-like antibody responses by linking proximal TACI signaling events with distal immunometabolic transcription programs.Marginal zone B cells differentiate into plasma cells rapidly in response to T-cell-independent antigens, but how they do so is not clear. Here the authors show TACI cooperates with TLR signalling to drive mTOR activity and subsequent class switching and plasmablast differentiation.
Nature Immunology | 2014
Irene Puga; Montserrat Cols; Carolina M. Barra; Bing He; Linda Cassis; Maurizio Gentile; Laura Comerma; Alejo Chorny; Meimei Shan; Weifeng Xu; Giuliana Magri; Daniel M. Knowles; Wayne Tam; April Chiu; James B. Bussel; Sergi Serrano; José A. Lorente; Beatriz Bellosillo; Josep Lloreta; Nuria Juanpere; Francesc Alameda; Teresa Baró; Cristina Díaz de Heredia; Nuria Toran; Albert Catala; Montserrat Torrebadell; Clàudia Fortuny; Victoria Cusí; Carmen Carreras; George A. Diaz
Irene Puga, Montserrat Cols, Carolina M Barra, Bing He, Linda Cassis, Maurizio Gentile, Laura Comerma, Alejo Chorny, Meimei Shan, Weifeng Xu, Giuliana Magri, Daniel M Knowles, Wayne Tam, April Chiu, James B Bussel, Sergi Serrano, José Antonio Lorente, Beatriz Bellosillo, Josep Lloreta, Nuria Juanpere, Francesc Alameda, Teresa Baró, Cristina Díaz de Heredia, Núria Torán, Albert Català, Montserrat Torrebadell, Claudia Fortuny, Victoria Cusí, Carmen Carreras, George A Diaz, J Magarian Blander, Claire-Michèle Farber, Guido Silvestri, Charlotte Cunningham-Rundles, Michaela Calvillo, Carlo Dufour, Lucia Dora Notarangelo, Vassilios Lougaris, Alessandro Plebani, Jean-Laurent Casanova, Stephanie C Ganal, Andreas Diefenbach, Juan Ignacio Aróstegui, Manel Juan, Jordi Yagüe, Nizar Mahlaoui, Jean Donadieu, Kang Chen & Andrea Cerutti Nat. Immunol. 13, 170–180 (2012); published online 25 December 2011; corrected after print 12 July 2013