Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene Tracey is active.

Publication


Featured researches published by Irene Tracey.


Neuron | 2007

The Cerebral Signature for Pain Perception and Its Modulation

Irene Tracey; Patrick W. Mantyh

Our understanding of the neural correlates of pain perception in humans has increased significantly since the advent of neuroimaging. Relating neural activity changes to the varied pain experiences has led to an increased awareness of how factors (e.g., cognition, emotion, context, injury) can separately influence pain perception. Tying this body of knowledge in humans to work in animal models of pain provides an opportunity to determine common features that reliably contribute to pain perception and its modulation. One key system that underpins the ability to change pain intensity is the brainstems descending modulatory network with its pro- and antinociceptive components. We discuss not only the latest data describing the cerebral signature of pain and its modulation in humans, but also suggest that the brainstem plays a pivotal role in gating the degree of nociceptive transmission so that the resultant pain experienced is appropriate for the particular situation of the individual.


The Journal of Neuroscience | 2001

Exacerbation of Pain by Anxiety Is Associated with Activity in a Hippocampal Network

Alexander Ploghaus; Charvy Narain; Christian F. Beckmann; Stuart Clare; Susanna Bantick; Richard Geoffrey Wise; Paul M. Matthews; J. Nicholas P. Rawlins; Irene Tracey

It is common clinical experience that anxiety about pain can exacerbate the pain sensation. Using event-related functional magnetic resonance imaging (FMRI), we compared activation responses to noxious thermal stimulation while perceived pain intensity was manipulated by changes in either physical intensity or induced anxiety. One visual signal, which reliably predicted noxious stimulation of moderate intensity, came to evoke low anxiety about the impending pain. Another visual signal was followed by the same, moderate-intensity stimulation on most of the trials, but occasionally by discriminably stronger noxious stimuli, and came to evoke higher anxiety. We found that the entorhinal cortex of the hippocampal formation responded differentially to identical noxious stimuli, dependent on whether the perceived pain intensity was enhanced by pain-relevant anxiety. During this emotional pain modulation, entorhinal responses predicted activity in closely connected, affective (perigenual cingulate), and intensity coding (mid-insula) areas. Our finding suggests that accurate preparatory information during medical and dental procedures alleviates pain by disengaging the hippocampus. It supports the proposal that during anxiety, the hippocampal formation amplifies aversive events to prime behavioral responses that are adaptive to the worst possible outcome.


NeuroImage | 2004

Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal

Richard Geoffrey Wise; Kojiro Ide; Marc J. Poulin; Irene Tracey

Carbon dioxide is a potent cerebral vasodilator. We have identified a significant source of low-frequency variation in blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal at 3 T arising from spontaneous fluctuations in arterial carbon dioxide level in volunteers at rest. Fluctuations in the partial pressure of end-tidal carbon dioxide (Pet(CO(2))) of +/-1.1 mm Hg in the frequency range 0-0.05 Hz were observed in a cohort of nine volunteers. Correlating with these fluctuations were significant generalized grey and white matter BOLD signal fluctuations. We observed a mean (+/-standard error) regression coefficient across the group of 0.110 +/- 0.033% BOLD signal change per mm Hg CO(2) for grey matter and 0.049 +/- 0.022% per mm Hg in white matter. Pet(CO(2))-related BOLD signal fluctuations showed regional differences across the grey matter, suggesting variability of the responsiveness to carbon dioxide at rest. Functional magnetic resonance imaging (fMRI) results were corroborated by transcranial Doppler (TCD) ultrasound measurements of the middle cerebral artery (MCA) blood velocity in a cohort of four volunteers. Significant Pet(CO(2))-correlated fluctuations in MCA blood velocity were observed with a lag of 6.3 +/- 1.2 s (mean +/- standard error) with respect to Pet(CO(2)) changes. This haemodynamic lag was adopted in the analysis of the BOLD signal. Doppler ultrasound suggests that a component of low-frequency BOLD signal fluctuations is mediated by CO(2)-induced changes in cerebral blood flow (CBF). These fluctuations are a source of physiological noise and a potentially important confounding factor in fMRI paradigms that modify breathing. However, they can also be used for mapping regional vascular responsiveness to CO(2).


Nature Reviews Neuroscience | 2008

A common neurobiology for pain and pleasure.

Siri Leknes; Irene Tracey

Pain and pleasure are powerful motivators of behaviour and have historically been considered opposites. Emerging evidence from the pain and reward research fields points to extensive similarities in the anatomical substrates of painful and pleasant sensations. Recent molecular-imaging and animal studies have demonstrated the important role of the opioid and dopamine systems in modulating both pain and pleasure. Understanding the mutually inhibitory effects that pain and reward processing have on each other, and the neural mechanisms that underpin such modulation, is important for alleviating unnecessary suffering and improving well-being.


Trends in Cognitive Sciences | 2008

Neurocognitive aspects of pain perception

Katja Wiech; Markus Ploner; Irene Tracey

The perception of pain is sensitive to various mental processes such as the feelings and beliefs that someone has about pain. It is therefore not exclusively driven by the noxious input. Attentional modulation involving the descending pain modulatory system has been examined extensively in neuroimaging studies. However, the investigation of neural mechanisms underlying more complex cognitive modulation is an emerging field in pain research. Recent findings indicate an engagement of the ventrolateral prefrontal cortex during more complex modulation, leading to a change or reappraisal of the emotional significance of pain. Taking placebo-induced analgesia as an example, we discuss the contribution of attention, expectation and reappraisal as three basic mechanisms that are important for the cognitive modulation of pain.


Science Translational Medicine | 2011

The Effect of Treatment Expectation on Drug Efficacy: Imaging the Analgesic Benefit of the Opioid Remifentanil

Ulrike Bingel; Vishvarani Wanigasekera; Katja Wiech; R Ní Mhuircheartaigh; Michael C. Lee; Markus Ploner; Irene Tracey

An individual’s expectation that a pain treatment will or will not work can alter both its subjective effectiveness and the pain-related activity in the brain. Gloomy Forecasts Prove True A pessimist walks into a hospital. His grim prediction that doctors will be unable to alleviate his back pain proved correct—after several days of various treatments, his pain persisted. According to new results from Bingel and colleagues, the gloomy outlook this patient brought with him into his pain treatment may have ensured that his prediction was a self-fulfilling prophesy. Using sophisticated brain imaging techniques, the authors show that one’s expectation of the success of a pain treatment can markedly influence its effectiveness. In this new study, healthy people were exposed to pain-provoking heat and also given the painkilling opioid drug remifentanil. In advance of each instance of drug administration, the authors informed the subjects that the drug would have no effect, that it would diminish the sensation of pain, or that it would make the pain worse. When subjects expected the drug to be effective, they were not disappointed—they experienced twice as much pain relief as they did when they expected to obtain no benefit from the drug (but did, in fact, get some relief). In contrast, when they expected remifentanil to make the heat pain worse they found that their pain was unchanged. But these subjective reports could be influenced by a host of variables. What was actually happening within the brains of these individuals to shift their pain perceptions so dramatically? With functional magnetic resonance imaging (fMRI), the authors of Bingel et al. examined brain activity during the experiment. Thermal pain itself causes activation of a so-called pain circuit, which encompasses numerous brain regions including the somatosensory cortex, the cingulate cortex, insula, thalamus, and brainstem. Expectation of increased pain was accompanied by more neural activity in the hippocampus, midcingulate cortex, and medial prefrontal cortex—brain areas that mediate mood and anxiety—than was observed in these regions during expectation of analgesia. Conversely, individuals who expected the drug to mitigate their pain showed increases in the anterior cingulate cortex and the striatum, signs that descending mechanisms of pain inhibition were engaged. These clues about how our beliefs can affect the way we experience medical treatment for pain can improve the practice of medicine. A drug with a true biological effect may appear to be ineffective to a patient conditioned to expect failure, whether the patient is enrolled in a clinical trial or treated in a physician’s office. Patient education about treatments can help counteract this problem by shaping beliefs to maximize drug effectiveness. If appropriate treatments are accompanied by encouraging words, a pessimist could become an optimist about his future robust health, and thereby make it so. Evidence from behavioral and self-reported data suggests that the patients’ beliefs and expectations can shape both therapeutic and adverse effects of any given drug. We investigated how divergent expectancies alter the analgesic efficacy of a potent opioid in healthy volunteers by using brain imaging. The effect of a fixed concentration of the μ-opioid agonist remifentanil on constant heat pain was assessed under three experimental conditions using a within-subject design: with no expectation of analgesia, with expectancy of a positive analgesic effect, and with negative expectancy of analgesia (that is, expectation of hyperalgesia or exacerbation of pain). We used functional magnetic resonance imaging to record brain activity to corroborate the effects of expectations on the analgesic efficacy of the opioid and to elucidate the underlying neural mechanisms. Positive treatment expectancy substantially enhanced (doubled) the analgesic benefit of remifentanil. In contrast, negative treatment expectancy abolished remifentanil analgesia. These subjective effects were substantiated by significant changes in the neural activity in brain regions involved with the coding of pain intensity. The positive expectancy effects were associated with activity in the endogenous pain modulatory system, and the negative expectancy effects with activity in the hippocampus. On the basis of subjective and objective evidence, we contend that an individual’s expectation of a drug’s effect critically influences its therapeutic efficacy and that regulatory brain mechanisms differ as a function of expectancy. We propose that it may be necessary to integrate patients’ beliefs and expectations into drug treatment regimes alongside traditional considerations in order to optimize treatment outcomes.


NeuroImage | 2009

The influence of negative emotions on pain: Behavioral effects and neural mechanisms

Katja Wiech; Irene Tracey

The idea that pain can lead to feelings of frustration, worry, anxiety and depression seems obvious, particularly if it is of a chronic nature. However, there is also evidence for the reverse causal relationship in which negative mood and emotion can lead to pain or exacerbate it. Here, we review findings from studies on the modulation of pain by experimentally induced mood changes and clinical mood disorders. We discuss possible neural mechanisms underlying this modulatory influence focusing on the periaqueductal grey (PAG), amygdala, anterior cingulate cortex (ACC) and anterior insula as key players in both, pain and affective processing.


Nature Medicine | 2010

Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans

Irene Tracey

The perception of pain is subject to powerful influences. Understanding how these are mediated at a neuroanatomical and neurobiological level provides us with valuable information that has a direct impact on our ability to harness positive and minimize negative effects therapeutically, as well as optimize clinical trial designs when developing new analgesics. This is particularly relevant for placebo and nocebo effects. New research findings have directly contributed to an increased understanding of how placebo and nocebo effects are produced and what biological and psychological factors influence variances in the magnitude of the effect. The findings have relevance for chronic pain states and other disorders, where abnormal functioning of crucial brain regions might affect analgesic outcome even in the normal therapeutic setting.


Journal of Anatomy | 2005

From nociception to pain perception: imaging the spinal and supraspinal pathways.

J. Brooks; Irene Tracey

Functional imaging techniques have allowed researchers to look within the brain, and revealed the cortical representation of pain. Initial experiments, performed in the early 1990s, revolutionized pain research, as they demonstrated that pain was not processed in a single cortical area, but in several distributed brain regions. Over the last decade, the roles of these pain centres have been investigated and a clearer picture has emerged of the medial and lateral pain system. In this brief article, we review the imaging literature to date that has allowed these advances to be made, and examine the new frontiers for pain imaging research: imaging the brainstem and other structures involved in the descending control of pain; functional and anatomical connectivity studies of pain processing brain regions; imaging models of neuropathic pain‐like states; and going beyond the brain to image spinal function. The ultimate goal of such research is to take these new techniques into the clinic, to investigate and provide new remedies for chronic pain sufferers.


Arthritis & Rheumatism | 2009

Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients.

Stephen Gwilym; John R. Keltner; Catherine E. Warnaby; A J Carr; Boris A. Chizh; Iain P. Chessell; Irene Tracey

OBJECTIVE The groin pain experienced by patients with hip osteoarthritis (OA) is often accompanied by areas of referred pain and changes in skin sensitivity. We aimed to identify the supraspinal influences that underlie these clinical manifestations that we consider indicative of possible central sensitization. METHODS Twenty patients with hip OA awaiting joint replacement and displaying signs of referred pain were recruited into the study, together with age-matched controls. All subjects completed pain psychology questionnaires and underwent quantitative sensory testing (QST) in their area of referred pain. Twelve of 20 patients and their age- and sex-matched controls underwent functional magnetic resonance imaging (MRI) while the areas of referred pain were stimulated using cold stimuli (12 degrees C) and punctate stimuli (256 mN). The remaining 8 of 20 patients underwent punctate stimulation only. RESULTS Patients were found to have significantly lower threshold perception to punctate stimuli and were hyperalgesic to the noxious punctate stimulus in their areas of referred pain. Functional brain imaging illustrated significantly greater activation in the brainstem of OA patients in response to punctate stimulation of their referred pain areas compared with healthy controls, and the magnitude of this activation positively correlated with the extent of neuropathic-like elements to the patients pain, as indicated by the PainDETECT score. DISCUSSION Using psychophysical (QST) and brain imaging methods (functional MRI), we have identified increased activity with the periaqueductal grey matter associated with stimulation of the skin in referred pain areas of patients with hip OA. This offers a central target for analgesia aimed at improving the treatment of this largely peripheral disease.

Collaboration


Dive into the Irene Tracey's collaboration.

Top Co-Authors

Avatar

Katja Wiech

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge