Ireneusz Kubiaczyk
Adam Mickiewicz University in Poznań
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ireneusz Kubiaczyk.
Demonstratio Mathematica | 1999
Slawomir Krzyska; Ireneusz Kubiaczyk
In this paper, we prove an existence theorem for bounded pseudo and weak solution of the differential equation x(t) = A(t)x(t) + f{t,x(t)) where /(•, x(-)) is Pettis-integrable for each strongly absolutely continuous function x and / ( t , •) is weakly-weakly sequentially continuous. We also assume some condition expressed in terms of De Blasis measure of weak noncompactness.
Demonstratio Mathematica | 2012
Mieczysław Cichoń; Ireneusz Kubiaczyk; Aneta Sikorska-Nowak; Ahmet Yantir
Abstract In this paper we obtain the existence of solutions and Carathéodory type solutions of the dynamic Cauchy problem in Banach spaces for functions defined on time scales xΔ(t)=f(t,x(t)),x(0)=x0,t∈Ia,
Demonstratio Mathematica | 1976
Ireneusz Kubiaczyk
Demonstratio Mathematica | 1976
Ireneusz Kubiaczyk
\matrix{{x^\Delta (t) = f(t,x(t)),} \hfill & {} \hfill \cr {x(0) = x_0 ,} \hfill & {t \in I_a ,} \hfill }
Demonstratio Mathematica | 2006
Ireneusz Kubiaczyk; Bhavana Deshpande
Demonstratio Mathematica | 1987
Ireneusz Kubiaczyk
where f is continuous or f satisfies Carathéodory conditions and some conditions expressed in terms of measures of noncompactness. The Mönch fixed point theorem is used to prove the main result, which extends these obtained for real valued functions.
Open Mathematics | 2015
Ahmet Yantir; Ireneusz Kubiaczyk; Aneta Sikorska-Nowak
Let (X,d) be a metric space and l e t S, T be two cor re spondences ( i . e . mappings from poin ts to s e t s ) from X to CB(X), which are ne i the r necessa r i ly continuous nor commuting. We s h a l l denots by CB(X) the se t of a l l non-empty closed and bounded subsets of X, by CL(X) the se t of a l l closed subsets of X, by H(A,B) the Hausdorff d i s tance of A, BeCB(X). We s h a l l a lso wr i t e D(A,B) = in f{d(a ,b ) : a e A , be b ) , i U , B ) = = sup j d ( a , b ) : a e A , b e b} . A point x e X w i l l be ca l led a f ixed point of S or T i f x e Sx or x e Ix r e s p e c t i v e l y . Suppose t h a t t he re a re nonnegative r e a l numbers a^ , a2» a^, a^ such t h a t
Demonstratio Mathematica | 1982
Ireneusz Kubiaczyk
I n r ecen t papers by Boyd and Wong [ 1 ] , Kannan [ 2 ] , Nadler [ 3 ] , Reich [ 4 , 5 ] , Sehgal [6] and o the r a u t h o r s , t he problem of ex i s t ence of f i x e d po in t has been i n v e s t i g a t e d . I n the p re sen t paper we g e n e r a l i z e t h e s e r e s u l t s . Throughout t h i s pape r , (X,d) denotes a me t r i c space. I f A,B are any non-empty subse t s of X we put D(A,B) = i n f { d ( a , b ) i a £ A, b e B ] , i(A,B) = sup{d(a ,b ) : a e A, b e B ] , H(A,B) = max [sup^D (a , B) s a e A), supfD(b,A) i b e B } ] . Let BN(X) = {C t C i s a non-empty bounded subse t of X], CB(X) = {0 i C i s a non-empty closed and bounded subset of X}, C(X) = {C i C i s a non-empty compact subset of X , and l e t Q = ( d ( x , y ) i x , y e X j , P = Q * Q * Q . I n t h i s paper l e t x X — CB(X) ( i = 1 , 2 ) , xQ £ X and f o r k < 1 , l e t t h e sequence (xQ) be de f ined by
Nonlinear Analysis-theory Methods & Applications | 2009
Mieczysław Cichoń; Ireneusz Kubiaczyk; Aneta Sikorska-Nowak; Ahmet Yantir
In this paper we prove a common coincidence point theorem for singlevalued and multivalued mappings satisfying an implicit relation under the condition of R-weak commutativity on metric spaces.
Annales Polonici Mathematici | 1995
Mieczysław Cichoń; Ireneusz Kubiaczyk
In the p r e sen t paper v/e prove some f i x e d and common f i x e d po in t theorems f o r c o n t r a c t i v e type mappings and mul t iva lued mappings i n the met r i c space . These theorems extend theorems of Achari [1] , Ray [6 ] , Reich [7 ] , Singh and W h i t f i e l d [ s ] . Let (X,d) be a met r ic space and l e t S, T be two c o r r e s pondences ( i . e . mappings from p o i n t s t o s e t s ) from X t o CB(X), which a re n e i t h e r n e c e s s a r i l y con t inuous nor commuting. We s h a l l denote by CB(X) the s e t of a l l non-empty c losed and bounded s u b s e t s of X, by CL(X) the s e t of a l l c losed s u b s e t s of X, by H(A,B) the Hausdorf f d i s t a n c e of A,B eCB(X). We s h a l l a l s o w r i t e D(A,B) = i n f { d ( a , b ) : a e A, b eB} , 5(A,B) = = sup ( d ( a , b ) : a e A , b e B } . A poin t x e X w i l l be c a l l e d a f i x e d po in t of S or T i s x e S x or x eTx r e s p e c t i v e l y . The theorems proved i n t h i s paper g e n e r a l i z e some r e s u l t s from [1-10] f o r mappings and c o r r e s p o n d e n c e s . T h e o r e m 1. Let (X,d) be a compact me t r i c space and S f T s X CL(X) and l e t S or T be con t inuous and s a t i s f y c o n d i t i o n s t h e r e e x i s t s a r e a l valued f u n c t i o n