Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irfan Rahman is active.

Publication


Featured researches published by Irfan Rahman.


Nature Protocols | 2007

Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method

Irfan Rahman; Aruna Kode; Saibal K. Biswas

The spectrophotometric/microplate reader assay method for glutathione (GSH) involves oxidation of GSH by the sulfhydryl reagent 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) to form the yellow derivative 5′-thio-2-nitrobenzoic acid (TNB), measurable at 412 nm. The glutathione disulfide (GSSG) formed can be recycled to GSH by glutathione reductase in the presence of NADPH. The assay is composed of two parts: the preparation of cell cytosolic/tissue extracts and the detection of total glutathione (GSH and GSSG). The method is simple, convenient, sensitive and accurate. The lowest detection for GSH and GSSG is 0.103 nM in a 96-well plate. This method is rapid and the whole procedure takes no longer than 15 min including reagent preparation. The method can assay GSH in whole blood, plasma, serum, lung lavage fluid, cerebrospinal fluid, urine, tissues and cell extracts and can be extended for drug discovery/pharmacology and toxicology protocols to study the effects of drugs and toxic compounds on glutathione metabolism.


European Respiratory Journal | 2006

Oxidative stress and redox regulation of lung inflammation in COPD

Irfan Rahman; Ian M. Adcock

Reactive oxygen species, either directly or via the formation of lipid peroxidation products, may play a role in enhancing inflammation through the activation of stress kinases (c-Jun activated kinase, extracellular signal-regulated kinase, p38) and redox-sensitive transcription factors, such as nuclear factor (NF)-κB and activator protein-1. This results in increased expression of a battery of distinct pro-inflammatory mediators. Oxidative stress activates NF-κB-mediated transcription of pro-inflammatory mediators either through activation of its activating inhibitor of κB-α kinase or the enhanced recruitment and activation of transcriptional co-activators. Enhanced NF-κB-co-activator complex formation results in targeted increases in histone modifications, such as acetylation leading to inflammatory gene expression. Emerging evidence suggests the glutathione redox couple may entail dynamic regulation of protein function by reversible disulphide bond formation on kinases, phosphatases and transcription factors. Oxidative stress also inhibits histone deacetylase activity and in doing so further enhances inflammatory gene expression and may attenuate glucocorticoid sensitivity. The antioxidant/anti-inflammatory effects of thiol molecules (glutathione, N-acetyl-L-cysteine and N-acystelyn, erdosteine), dietary polyphenols (curcumin-diferuloylmethane, cathechins/quercetin and reserveratol), specific spin traps, such as α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (extracellular superoxide dismutase (SOD) mimetic, SOD mimetic M40419 and SOD, and catalase manganic salen compound, eukarion-8), porphyrins (AEOL 10150 and AEOL 10113) and theophylline have all been shown to play a role in either controlling NF-κB activation or affecting histone modifications with subsequent effects on inflammatory gene expression in lung epithelial cells. Thus, oxidative stress regulates both key signal transduction pathways and histone modifications involved in lung inflammation. Various approaches to enhance lung antioxidant capacity and clinical trials of antioxidant compounds in chronic obstructive pulmonary disease are also discussed.


Free Radical Biology and Medicine | 2000

Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches

Irfan Rahman; William MacNee

Glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH), is a vital intra- and extracellular protective antioxidant. Glutathione is synthesized from its constituent amino acids by the sequential action of gamma-glutamylcysteine synthetase (gamma-GCS) and GSH synthetase. The rate-limiting enzyme in GSH synthesis is gamma-GCS. Gamma-GCS expression is modulated by oxidants, phenolic antioxidants, and inflammatory and anti-inflammatory agents in various mammalian cells. The intracellular GSH redox homeostasis is strictly regulated to govern cell metabolism and protect cells against oxidative stress. Growing evidence has suggested that cellular oxidative processes have a fundamental role in inflammation through the activation of stress kinases (JNK, MAPK, p38) and redox-sensitive transcription factors such as NF-kappaB and AP-1, which differentially regulate the genes for proinflammatory mediators and protective antioxidant genes such as gamma-GCS, Mn-SOD, and heme oxygenase-1. The critical balance between the induction of proinflammatory mediators and antioxidant genes and the regulation of the levels of GSH in response to oxidative stress at the site of inflammation is not known. Knowledge of the mechanisms of redox GSH regulation and gene transcription in inflammation could lead to the development of novel therapies based on the pharmacological manipulation of the production of this important antioxidant in inflammation and injury. This FORUM article features the role of GSH levels in the regulation of transcription factors, whose activation and DNA binding leads to proinflammatory and antioxidant gene transcription. The potential role of thiol antioxidants as a therapeutic approach in inflammatory lung diseases is also discussed.


Thorax | 1998

Role of transcription factors in inflammatory lung diseases

Irfan Rahman; William MacNee

Acute and chronic alveolar and/or bronchial inflammation is thought to be central to the pathogenesis of many lung disorders such as asthma, chronic obstructive pulmonary disease (COPD), adult respiratory distress syndrome (ARDS), and idiopathic pulmonary fibrosis (IPF). The site and specific characteristics of the inflammatory responses may be different in each of these diseases, but all are characterised by the recruitment to the lungs and activation of immune and inflammatory cells. These activated cells produce cytokines, oxidants and many other mediators which are involved in inflammation.1 2 Recent data indicate that, in addition, airway epithelial cells are able to act as immune effector cells by secreting pro-inflammatory mediators, oxidants, and cytokines.3 Once triggered, an inappropriate chronic inflammatory response persists in these conditions and is presumed to result in lung injury. The intracellular molecular mechanisms in response to environmental signals, leading to increased gene expression and biosynthesis of proinflammatory mediators by airspace inflammatory and epithelial cells, are of considerable current interest. It is now recognised that there are gene specific factors which regulate the transcription of particular genes by affinity binding to specific recognition motifs, which are usually located in the upstream (5′) promoter region of the gene. These factors, which are usually located in the cytosol, can translocate to the cell nucleus and, by binding to specific consensus sites, can upregulate the rate of transcription of the gene and therefore increase the formation of messenger RNA (mRNA) and the protein of an inflammatory mediator. Some transcription factors are cell specific, but others are ubiquitous. Their activity can be modulated by environmental signals and they may play a key role in immune and inflammatory responses. The transcription factors about which there is most information in immune and inflammatory responses are nuclear factor-kappa (κ)B (NF-κB) and activator protein 1 (AP-1). …


Archives of Biochemistry and Biophysics | 2010

Regulation of SIRT1 in cellular functions: role of polyphenols.

Sangwoon Chung; Hongwei Yao; Samuel Caito; Jae-woong Hwang; Gnanapragasam Arunachalam; Irfan Rahman

Sirtuin 1 (SIRT1) is known to deacetylate histones and non-histone proteins including transcription factors thereby regulating metabolism, stress resistance, cellular survival, cellular senescence/aging, inflammation-immune function, endothelial functions, and circadian rhythms. Naturally occurring dietary polyphenols, such as resveratrol, curcumin, quercetin, and catechins, have antioxidant and anti-inflammatory properties via modulating different pathways, such as NF-kappaB- and mitogen activated protein kinase-dependent signaling pathways. In addition, these polyphenols have also been shown to activate SIRT1 directly or indirectly in a variety of models. Therefore, activation of SIRT1 by polyphenols is beneficial for regulation of calorie restriction, oxidative stress, inflammation, cellular senescence, autophagy/apoptosis, autoimmunity, metabolism, adipogenesis, circadian rhythm, skeletal muscle function, mitochondria biogenesis and endothelial dysfunction. In this review, we describe the regulation of SIRT1 by dietary polyphenols in various cellular functions in response to environmental and pro-inflammatory stimuli.


Free Radical Biology and Medicine | 2003

Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10)

Ken Donaldson; Vicki Stone; Paul J. A. Borm; Luis A. Jimenez; Peter S. Gilmour; Roel P. F. Schins; Ad M. Knaapen; Irfan Rahman; Stephen P. Faux; David M. Brown; William MacNee

This review focuses on the potential role that oxidative stress plays in the adverse effects of PM(10). The central hypothesis is that the ability of PM(10) to cause oxidative stress underlies the association between increased exposure to PM(10) and both exacerbations of lung disease and lung cancer. Pulmonary inflammation may also underlie the cardiovascular effects seen following increased PM(10), although the mechanisms of the cardiovascular effects of PM(10) are not well understood. PM(10) is a complex mix of various particle types and several of the components of PM(10) are likely to be involved in the induction of oxidative stress. The most likely of these are transition metals, ultrafine particle surfaces, and organic compounds. In support of this hypothesis, oxidative stress arising from PM(10) has been shown to activate a number of redox-responsive signaling pathways in lung target cells. These pathways are involved in expression of genes that play a role in responses relevant to inflammation and pathological change, including MAPKs, NF-kappaB, AP-1, and histone acetylation. Oxidative stress from particles is also likely to play an important role in the carcinogenic effects associated with PM(10) and hydroxyl radicals from PM(10) cause DNA damage in vitro.


Free Radical Biology and Medicine | 1996

Role of oxidants/antioxidants in smoking-induced lung diseases.

Irfan Rahman; William MacNee

An imbalance between oxidants and antioxidants has been considered in the pathogenesis of smoking-induced lung diseases, such as chronic obstructive pulmonary disease (COPD), particularly emphysema. Recent evidence indicates that increased neutrophil sequestration and activation occurs in the pulmonary microvasculature in smokers and in patients with COPD, with the potential to release reactive oxygen species (ROS). ROS generated by airspace phagocytes or inhaled directly from the environment also increase the oxidant burden and may contribute to the epithelial damage. Although much research has focused on the protease/antiprotease theory of the pathogenesis of emphysema, less attention has been paid to the role of ROS in this condition. The injurious effects of the increased oxidant burden in smokers and in patients with COPD are opposed by the lung antioxidant defences. Hence, determining the mechanisms regulating the antioxidant responses is critical to our understanding of the role of oxidants in the pathogenesis of smoking-induced lung disease and to devising future strategies for antioxidant therapy. In this article we have reviewed the evidence for the presence of an oxidant/antioxidant imbalance in smoking-induced lung disease and its relevance to therapy in these conditions.


American Journal of Respiratory and Critical Care Medicine | 2008

SIRT1, an Antiinflammatory and Antiaging Protein, Is Decreased in Lungs of Patients with Chronic Obstructive Pulmonary Disease

Saravanan Rajendrasozhan; Se-Ran Yang; Vuokko L. Kinnula; Irfan Rahman

RATIONALE Abnormal inflammation and accelerated decline in lung function occur in patients with chronic obstructive pulmonary disease (COPD). Human sirtuin (SIRT1), an antiaging and antiinflammatory protein, is a metabolic NAD(+)-dependent protein/histone deacetylase that regulates proinflammatory mediators by deacetylating histone and nonhistone proteins. OBJECTIVES To determine the expression of SIRT1 in lungs of smokers and patients with COPD, and to elucidate the regulation of SIRT1 in response to cigarette smoke in macrophages, and its impact on nuclear factor (NF)-kappaB regulation. METHODS SIRT1 and NF-kappaB levels were assessed in lung samples of nonsmokers, smokers, and patients with COPD. Human monocyte-macrophage cells (MonoMac6) were treated with cigarette smoke extract (CSE) to determine the mechanism of CSE-mediated regulation of SIRT1 and its involvement in RelA/p65 regulation and IL-8 release. MEASUREMENTS AND MAIN RESULTS Peripheral lungs of smokers and patients with COPD showed decreased levels of nuclear SIRT1, as compared with nonsmokers, associated with its post-translational modifications (formation of nitrotyrosine and aldehyde carbonyl adducts). Treatment of MonoMac6 cells with CSE showed decreased levels of SIRT1 associated with increased acetylation of RelA/p65 NF-kappaB. Mutation or knockdown of SIRT1 resulted in increased acetylation of nuclear RelA/p65 and IL-8 release, whereas overexpression of SIRT1 decreased IL-8 release in response to CSE treatment in MonoMac6 cells. CONCLUSIONS SIRT1 levels were reduced in macrophages and lungs of smokers and patients with COPD due to its post-translational modifications by cigarette smoke-derived reactive components, leading to increased acetylation of RelA/p65. Thus, SIRT1 plays a pivotal role in regulation of NF-kappaB-dependent proinflammatory mediators in lungs of smokers and patients with COPD.


The FASEB Journal | 2004

Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-κB activation and proinflammatory cytokine release in alveolar epithelial cells

Fiona M. Moodie; John A. Marwick; Charlotte S. Anderson; Patryk Szulakowski; Saibal K. Biswas; Mark R. Bauter; Iain Kilty; Irfan Rahman

Oxidative stress is implicated in lung inflammation due to its effect on proinflammatory gene transcription. Changes in gene transcription depend on chromatin remodeling and the relative activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Alterations in the nuclear histone acetylation:deacetylation balance may result in uncontrolled transcription of specific proinflammatory genes. We studied the effect of hydrogen peroxide (H2O2) and cigarette smoke condensate (CSC) on histone acetylation:deacetylation in human alveolar epithelial cells (A549). H2O2 and CSC significantly increased acetylation of histone H4 proteins and were associated with decreased HDAC activity and HDAC2 levels in A549 cells. Also, the decreased HDAC2 activity was due to protein modification by aldehydes and nitric oxide products. Pretreatment of A549 cells with N‐acetyl‐L‐cysteine attenuated the oxidant‐mediated reduction in HDAC activity. Treatment of A549 cells with CSC did not cause nuclear factor‐κB (NF‐κB) activation or expression and release of either interleukin (IL)‐8 or IL‐6. However, H2O2, tumor necrosis factor‐α (TNF‐α), and IL‐1β significantly increased NF‐κB activation and expression of IL‐8 compared with control cells. Interestingly, CSC dose dependently inhibited TNF‐α‐ and IL‐ 1β‐mediated NF‐κB activation and IL‐8 expression. Thus, H2O2 and CSC enhance acetylation of histone proteins and decrease histone deacetylase activity but differentially regulate proinflammatory cytokine release in alveolar epithelial cells.


Molecular and Cellular Biochemistry | 2002

Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation.

Irfan Rahman; Peter S. Gilmour; Luis A. Jimenez; William MacNee

Oxidants and inflammatory mediators such as tumour necrosis factor-alpha (TNF-alpha) activate nuclear factor kappa B (NF-kappaB) and activator protein-1 (AP-1) transcription factors, and enhance the expression of both pro-inflammatory and protective antioxidant genes. Remodelling of chromatin within the nucleus, controlled by the degree of acetylation/deacetylation of histone residues on the histone core around which DNA is coiled, is important in allowing access for transcription factor DNA binding and hence gene transcription. Unwinding of DNA is important in allowing access for transcription factor DNA binding and hence gene transcription. Nuclear histone acetylation is a reversible process, and is regulated by a group of acetyltransferases (HATs) which promote acetylation, and deacetylases (HDACs) which promote deacetylation. The aim of this study was to determine whether oxidative stress and the pro-inflammatory mediator, TNF-alpha, altered histone acetylation/deacetylation and the activation of NF-kappaB and AP-1, leading to the release ofthe pro-inflammatory cytokine IL-8 in human alveolar epithelial cells (A549). Hydrogen peroxide (H2O2) (100 microM) and TNF-alpha (10 ng/ml) imposed oxidative stress in A549 cells as shown by depletion of the antioxidant reduced glutathione (GSH) concomitant with increased levels of oxidised glutathione (GSSG). Treatment of A549 cells with H2O2, TNF-alpha and the HDAC inhibitor, trichostatin A, TSA (100 ng/ml) significantly increased acetylation of histone proteins shown by immunostaining of cells and increased HAT activity, compared to the untreated cells. H2O2, and TNF-a, and TSA all increased NF-kappaB and AP-1 DNA binding to their consensus sites assessed by the electrophoretic mobility shift assay. TSA treatment potentiated the increased AP-1 and NF-KB binding, produced by H2O2 or TNF-alpha treatments in A549 cells. Both H2O2 and TNF-alpha significantly increased IL-8 release, which was further enhanced by pre-treatment of A549 cells with TSA compared to the individual treatments. This study shows that the oxidant H2O2 and the pro-inflammatory mediator, TNF-a induce histone acetylation which is associated with decreased GSH levels and increased AP-1 and NF-kappaB activation leading to enhanced proinflammatory IL-8 release in alveolar epithelial cells. This indicates a mechanism for the pro-inflammatory effects of oxidative stress.

Collaboration


Dive into the Irfan Rahman's collaboration.

Top Co-Authors

Avatar

Hongwei Yao

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Isaac K. Sundar

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sangwoon Chung

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Saravanan Rajendrasozhan

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jae-woong Hwang

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Se-Ran Yang

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Samuel Caito

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge