Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina A. Okkelman is active.

Publication


Featured researches published by Irina A. Okkelman.


Biochimica et Biophysica Acta | 2015

A novel effect of DMOG on cell metabolism: direct inhibition of mitochondrial function precedes HIF target gene expression

Alexander V. Zhdanov; Irina A. Okkelman; Fergus W. J. Collins; Silvia Melgar; Dmitri B. Papkovsky

Abnormal accumulation of oncometabolite fumarate and succinate is associated with inhibition of mitochondrial function and carcinogenesis. By competing with α-ketoglutarate, oncometabolites also activate hypoxia inducible factors (HIFs), which makes oncometabolite mimetics broadly utilised in hypoxia research. We found that dimethyloxalylglycine (DMOG), a synthetic analogue of α-ketoglutarate, commonly used to induce HIF signalling, inhibits O2 consumption in cancer cell lines HCT116 and PC12, well before activation of HIF pathways. A rapid suppression of cellular respiration was accompanied by a decrease in histone H4 lysine 16 acetylation and not abolished by double knockdown of HIF-1α and HIF-2α. In agreement with this, production of NADH and state 3 respiration in isolated mitochondria were down-regulated by the de-esterified DMOG derivative, N-oxalylglycine. Exploring the roles of DMOG as a putative inhibitor of glutamine/α-ketoglutarate metabolic axis, we found that the observed suppression of OxPhos and compensatory activation of glycolytic ATP flux make cancer cells vulnerable to combined treatment with DMOG and inhibitors of glycolysis. On the other hand, DMOG treatment impairs deep cell deoxygenation in 3D tissue culture models, demonstrating a potential to relieve functional stress imposed by deep hypoxia on tumour, ischemic or inflamed tissues. Indeed, using a murine model of colitis, we found that O2 availability in the inflamed colon tissue rapidly increased after application of DMOG, which could contribute to the known therapeutic effect of this compound. Overall, our results provide new insights into the relationship between mitochondrial function, O2 availability, metabolic reprogramming and associated diseases.


American Journal of Physiology-cell Physiology | 2015

Imaging of oxygen gradients in giant umbrella cells: an ex vivo PLIM study

Alexander V. Zhdanov; Anna V. Golubeva; Irina A. Okkelman; John F. Cryan; Dmitri B. Papkovsky

O2 plays a pivotal role in aerobic metabolism and regulation of cell and tissue function. Local differences and fluctuations in tissue O2 levels are well documented; however, the physiological significance of O2 microgradients, particularly at the subcellular level, remains poorly understood. Using the cell-penetrating phosphorescent O2 probe Pt-Glc and confocal fluorescence microscopy, we visualized O2 distribution in individual giant (>100-μm) umbrella cells located superficially in the urinary bladder epithelium. We optimized conditions for in vivo phosphorescent staining of the inner surface of the mouse bladder and subsequent ex vivo analysis of excised live tissue. Imaging experiments revealed significant (≤85 μM) and heterogeneous deoxygenation within respiring umbrella cells, with radial O2 gradients of up to 40 μM across the cell, or ∼0.6 μM/μm. Deeply deoxygenated (5-15 μM O2) regions were seen to correspond to the areas enriched with polarized mitochondria. Pharmacological activation of mitochondrial respiration decreased oxygenation and O2 gradients in umbrella cells, while inhibition with antimycin A dissipated the gradients and caused gradual reoxygenation of the tissue to ambient levels. Detailed three-dimensional maps of O2 distribution potentially can be used for the modeling of intracellular O2-dependent enzymatic reactions and downstream processes, such as hypoxia-inducible factor signaling. Further ex vivo and in vivo studies on intracellular and tissue O2 gradients using confocal imaging can shed light on the molecular mechanisms regulating O2-dependent (patho)physiological processes in the bladder and other tissues.


PLOS ONE | 2016

Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase

Dmitri B. Papkovsky; Irina A. Okkelman; Ruslan I. Dmitriev; Tara Foley

Incorporation of thymidine analogues in replicating DNA, coupled with antibody and fluorophore staining, allows analysis of cell proliferation, but is currently limited to monolayer cultures, fixed cells and end-point assays. We describe a simple microscopy imaging method for live real-time analysis of cell proliferation, S phase progression over several division cycles, effects of anti-proliferative drugs and other applications. It is based on the prominent (~ 1.7-fold) quenching of fluorescence lifetime of a common cell-permeable nuclear stain, Hoechst 33342 upon the incorporation of 5-bromo-2’-deoxyuridine (BrdU) in genomic DNA and detection by fluorescence lifetime imaging microscopy (FLIM). We show that quantitative and accurate FLIM technique allows high-content, multi-parametric dynamic analyses, far superior to the intensity-based imaging. We demonstrate its uses with monolayer cell cultures, complex 3D tissue models of tumor cell spheroids and intestinal organoids, and in physiological study with metformin treatment.


Bioorganic & Medicinal Chemistry Letters | 2011

Control of lysyl oxidase activity through site-specific deuteration of lysine.

Nikolay B. Pestov; Irina A. Okkelman; Vadim V. Shmanai; Alaksiej L. Hurski; Amato J. Giaccia; Mikhail S. Shchepinov

Lysyl oxidase (LOX) is implicated in several extracellular matrix related disorders, including fibrosis and cancer. Methods of inhibition of LOX in vivo include antibodies, copper sequestration and toxic small molecules such as β-aminopropionitrile. Here, we propose a novel approach to modulation of LOX activity based on the kinetic isotope effect (KIE). We show that 6,6-d(2)-lysine is oxidised by LOX at substantially lower rate, with apparent deuterium effect on V(max)/K(m) as high as 4.35 ± 0.22. Lys is an essential nutrient, so dietary ingestion of D(2)Lys and its incorporation via normal Lys turnover suggests new approaches to mitigating LOX-associated pathologies.


Cell and Tissue Research | 2009

Nuclear transport of protein TTC4 depends on the cell cycle

Ruslan I. Dmitriev; Irina A. Okkelman; Roman A. Abdulin; Mikhail I. Shakhparonov; Nikolay B. Pestov

TTC4 (tetratricopeptide repeat domain protein 4) is a putative tumor suppressor involved in the transformation of melanocytes. At present, the relationships between TTC4 and DNA replication proteins are largely unknown, as are the tissue distribution and subcellular localization of TTC4. Using reverse transcription with the polymerase chain reaction, we have observed that the murine TTC4 gene is ubiquitously expressed. Analysis of the TTC4 subcellular localization has shown that, upon overexpression, TTC4 localizes to the cytoplasm. Interestingly, co-expression with a known protein interaction partner, hampin/MSL1, results in the nuclear translocation of the TTC4 protein. The subcellular localization of endogenous TTC4 depends, however, on the cell cycle: it is mostly nuclear in the G1 and S phases and is evenly distributed between the nucleus and cytoplasm in G2. The nuclear transport of TTC4 is apparently a complex process dependent on interactions with other proteins during the progression of the cell cycle. Thus, the dynamic character of the nuclear accumulation of TTC4 might be a potential link with regard to its function in tumor suppression.


Journal of Cellular Biochemistry | 2014

Two Distinct Nuclear Localization Signals in Mammalian MSL1 Regulate Its Function

Ruslan I. Dmitriev; Nikolay B. Pestov; Mikhail I. Shakhparonov; Irina A. Okkelman

MSL1 protein regulates global histone H4 acetylation at residue K16 in stem and cancer cells, through interaction with KAT8. The functional significance of mammalian MSL1 isoforms, involved in various protein interactions, is poorly understood. We report the identification of a novel nuclear localization signal (NLS), common to all MSL1 isoforms, in addition to previously known bipartite NLS, located in domain PEHE. Isoforms having both NLS localize to sub‐nuclear foci where they can target co‐chaperone protein TTC4. However, all MSL1 isoforms also have ability to affect H4K16 acetylation. Thus, presence of two NLS in MSL1 protein can mediate activity of KAT8 in vivo. J. Cell. Biochem. 115: 1967–1973, 2014.


Cell and Tissue Research | 2014

Nuclear translocation of lysyl oxidase is promoted by interaction with transcription repressor p66β

Irina A. Okkelman; Alia Z. Sukaeva; Ekaterina V. Kirukhina; Tatyana V. Korneenko; Nikolay B. Pestov

Lysyl oxidase (LOX) is an amine oxidase involved in protein cross-linking of the extracellular matrix. Less well characterized is the role that LOX plays among nuclear proteins, and molecular mechanisms of its transport to the nucleus are currently unknown. Here, we have employed yeast two-hybrid library screening and found that the LOX catalytic domain interacts with the transcription repressor p66β. This interaction has been confirmed in vitro and has been found to be accomplished through the CR2-containing domain of p66β. Moreover, co-expression of p66β and LOX in living tumor cells leads to the nuclear accumulation of LOX. Thus, p66β might be important for the regulation of LOX in the nucleus.


Advanced Functional Materials | 2018

Nanoparticle‐Based Fluoroionophore for Analysis of Potassium Ion Dynamics in 3D Tissue Models and In Vivo

Bernhard J. Müller; Alexander V. Zhdanov; Sergey M. Borisov; Tara Foley; Irina A. Okkelman; Vassiliy Tsytsarev; Qinggong Tang; Reha S. Erzurumlu; Yu Chen; Haijiang Zhang; Claudio Toncelli; Ingo Klimant; Dmitri B. Papkovsky; Ruslan I. Dmitriev

The imaging of real-time fluxes of K+ ions in live cell with high dynamic range (5-150 mM) is of paramount importance for neuroscience and physiology of the gastrointestinal tract, kidney and other tissues. In particular, the research on high-performance deep-red fluorescent nanoparticle-based biosensors is highly anticipated. We found that BODIPY-based FI3 K+-sensitive fluoroionophore encapsulated in cationic polymer RL100 nanoparticles displays unusually strong efficiency in staining of broad spectrum of cell models, such as primary neurons and intestinal organoids. Using comparison of brightness, photostability and fluorescence lifetime imaging microscopy (FLIM) we confirmed that FI3 nanoparticles display distinctively superior intracellular staining compared to the free dye. We evaluated FI3 nanoparticles in real-time live cell imaging and found that it is highly useful for monitoring intra- and extracellular K+ dynamics in cultured neurons. Proof-of-concept in vivo brain imaging confirmed applicability of the biosensor for visualization of epileptic seizures. Collectively, this data makes fluoroionophore FI3 a versatile cross-platform fluorescent biosensor, broadly compatible with diverse experimental models and that crown ether-based polymer nanoparticles can provide a new venue for design of efficient fluorescent probes.


Archive | 2017

Multi-Parametric Imaging of Hypoxia and Cell Cycle in Intestinal Organoid Culture

Irina A. Okkelman; Tara Foley; Dmitri B. Papkovsky; Ruslan I. Dmitriev

Dynamics of oxygenation of tissue and stem cell niches are important for understanding physiological function of the intestine in normal and diseased states. Only a few techniques allow live visualization of tissue hypoxia at cellular level and in three dimensions. We describe an optimized protocol, which uses cell-penetrating O2-sensitive probe, Pt-Glc and phosphorescence lifetime imaging microscopy (PLIM), to analyze O2 distribution in mouse intestinal organoids. Unlike the other indirect and end-point hypoxia stains, or point measurements with microelectrodes, this method provides high-resolution real-time visualization of O2 in organoids. Multiplexing with conventional fluorescent live cell imaging probes such as the Hoechst 33342-based FLIM assay of cell proliferation, and immunofluorescence staining of endogenous proteins, allows analysis of key physiologic parameters under O2 control in organoids. The protocol is useful for gastroenterology and physiology of intestinal tissue, hypoxia research, regenerative medicine, studying host-microbiota interactions and bioenergetics.


ACS Applied Materials & Interfaces | 2017

Phosphorescent Oxygen and Mechanosensitive Nanostructured Materials Based on Hard Elastic Polypropylene Films

Irina A. Okkelman; A. A. Dolgova; Swagata Banerjee; Joseph P. Kerry; Aleksandr L. Volynskii; O. V. Arzhakova; Dmitri B. Papkovsky

It is well known that sensitivity of quenched-phosphorescence O2 sensors can be tuned by changing the nature of indicator dye and host polymer acting as encapsulation and quenching mediums. Here, we describe a new type of sensor materials based on nanostructured hard elastic polymeric substrates. With the example of hard elastic polypropylene films impregnated with Pt-benzoporphyrin dye, we show that such substrates enable simple one-step fabrication of O2 sensors by standard and scalable polymer processing technologies. In addition, the resulting sensor materials show prominent response to tensile drawing via changes in phosphorescence intensity and lifetime and O2 quenching constant, Kq. The mechanosensitive response shows reversibility and hysteresis, which are related to macroscopic changes in the nanoporous structure of the polymer. Such multifunctional materials can find use as mechanically tunable O2 sensors, as well as strain/deformation sensors operating in a phosphorescence-lifetime-based detection mode.

Collaboration


Dive into the Irina A. Okkelman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolay B. Pestov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tara Foley

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge