Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina D. Pogozheva is active.

Publication


Featured researches published by Irina D. Pogozheva.


Bioinformatics | 2006

OPM: Orientations of Proteins in Membranes database

Mikhail A. Lomize; Irina D. Pogozheva; Henry I. Mosberg

SUMMARY The Orientations of Proteins in Membranes (OPM) database provides a collection of transmembrane, monotopic and peripheral proteins from the Protein Data Bank whose spatial arrangements in the lipid bilayer have been calculated theoretically and compared with experimental data. The database allows analysis, sorting and searching of membrane proteins based on their structural classification, species, destination membrane, numbers of transmembrane segments and subunits, numbers of secondary structures and the calculated hydrophobic thickness or tilt angle with respect to the bilayer normal. All coordinate files with the calculated membrane boundaries are available for downloading. AVAILABILITY http://opm.phar.umich.edu.


Nucleic Acids Research | 2012

OPM database and PPM web server: resources for positioning of proteins in membranes

Mikhail A. Lomize; Irina D. Pogozheva; Hyeon Joo; Henry I. Mosberg

The Orientations of Proteins in Membranes (OPM) database is a curated web resource that provides spatial positions of membrane-bound peptides and proteins of known three-dimensional structure in the lipid bilayer, together with their structural classification, topology and intracellular localization. OPM currently contains more than 1200 transmembrane and peripheral proteins and peptides from approximately 350 organisms that represent approximately 3800 Protein Data Bank entries. Proteins are classified into classes, superfamilies and families and assigned to 21 distinct membrane types. Spatial positions of proteins with respect to the lipid bilayer are optimized by the PPM 2.0 method that accounts for the hydrophobic, hydrogen bonding and electrostatic interactions of the proteins with the anisotropic water-lipid environment described by the dielectric constant and hydrogen-bonding profiles. The OPM database is freely accessible at http://opm.phar.umich.edu. Data can be sorted, searched or retrieved using the hierarchical classification, source organism, localization in different types of membranes. The database offers downloadable coordinates of proteins and peptides with membrane boundaries. A gallery of protein images and several visualization tools are provided. The database is supplemented by the PPM server (http://opm.phar.umich.edu/server.php) which can be used for calculating spatial positions in membranes of newly determined proteins structures or theoretical models.


Protein Science | 2006

Positioning of proteins in membranes: A computational approach

Irina D. Pogozheva; Mikhail A. Lomize; Henry I. Mosberg

A new computational approach has been developed to determine the spatial arrangement of proteins in membranes by minimizing their transfer energies from water to the lipid bilayer. The membrane hydrocarbon core was approximated as a planar slab of adjustable thickness with decadiene‐like interior and interfacial polarity profiles derived from published EPR studies. Applicability and accuracy of the method was verified for a set of 24 transmembrane proteins whose orientations in membranes have been studied by spin‐labeling, chemical modification, fluorescence, ATR FTIR, NMR, cryo‐microscopy, and neutron diffraction. Subsequently, the optimal rotational and translational positions were calculated for 109 transmembrane, five integral monotopic and 27 peripheral protein complexes with known 3D structures. This method can reliably distinguish transmembrane and integral monotopic proteins from water‐soluble proteins based on their transfer energies and membrane penetration depths. The accuracies of calculated hydrophobic thicknesses and tilt angles were ∼1 Å and 2°, respectively, judging from their deviations in different crystal forms of the same proteins. The hydrophobic thicknesses of transmembrane proteins ranged from 21.1 to 43.8 Å depending on the type of biological membrane, while their tilt angles with respect to the bilayer normal varied from zero in symmetric complexes to 26° in asymmetric structures. Calculated hydrophobic boundaries of proteins are located ∼5 Å lower than lipid phosphates and correspond to the zero membrane depth parameter of spin‐labeled residues. Coordinates of all studied proteins with their membrane boundaries can be found in the Orientations of Proteins in Membranes (OPM) database:http://opm.phar.umich.edu/.


Aaps Journal | 2005

Homology modeling of opioid receptor-ligand complexes using experimental constraints

Irina D. Pogozheva; Magdalena J. Przydzial; Henry I. Mosberg

Opioid receptors interact with a variety of ligands, including endogenous peptides, opiates, and thousands of synthetic compounds with different structural scaffolds. In the absence of experimental structures of opioid receptors, theoretical modeling remains an important tool for structurefunction analysis. The combination of experimental studies and modeling approaches allows development of realistic models of ligand-receptor complexes helpful for elucidation of the molecular determinants of ligand affinity and selectivity and for understanding mechanisms of functional agonism or antagonism. In this review we provide a brief critical assessment of the status of such theoretical modeling and describe some common problems and their possible solutions. Currently, there are no reliable theoretical methods to generate the models in a completely automatic fashion. Models of higher accuracy can be produced if homology modeling, based on the rhodopsin X-ray template, is supplemented by experimental structural constraints appropriate for the active orinactive receptor conformations, together with receptor-specific and ligand-specific interactions. The experimental constraints can be derived from mutagenesis and cross-linking studies, correlative replacements of ligand and receptor groups, and incorporation of metal binding sites between residues of receptors or receptors and ligands. This review focuses on the analysis of similarity and differences of the refined homology models of μ, δ, and κ-opioid receptors in active and inactive states, emphasizing the molecular details of interaction of the receptors with some representative peptide and nonpeptide ligands, underlying the multiple modes of binding of small opiates, and the differences in binding modes of agonists and antagonists, and of peptides and alkaloids.


BMC Structural Biology | 2007

The role of hydrophobic interactions in positioning of peripheral proteins in membranes

Irina D. Pogozheva; Mikhail A. Lomize; Henry I. Mosberg

BackgroundThree-dimensional (3D) structures of numerous peripheral membrane proteins have been determined. Biological activity, stability, and conformations of these proteins depend on their spatial positions with respect to the lipid bilayer. However, these positions are usually undetermined.ResultsWe report the first large-scale computational study of monotopic/peripheral proteins with known 3D structures. The optimal translational and rotational positions of 476 proteins are determined by minimizing energy of protein transfer from water to the lipid bilayer, which is approximated by a hydrocarbon slab with a decadiene-like polarity and interfacial regions characterized by water-permeation profiles. Predicted membrane-binding sites, protein tilt angles and membrane penetration depths are consistent with spin-labeling, chemical modification, fluorescence, NMR, mutagenesis, and other experimental studies of 53 peripheral proteins and peptides. Experimental membrane binding affinities of peripheral proteins were reproduced in cases that did not involve a helix-coil transition, specific binding of lipids, or a predominantly electrostatic association. Coordinates of all examined peripheral proteins and peptides with the calculated hydrophobic membrane boundaries, subcellular localization, topology, structural classification, and experimental references are available through the Orientations of Proteins in Membranes (OPM) database.ConclusionPositions of diverse peripheral proteins and peptides in the lipid bilayer can be accurately predicted using their 3D structures that represent a proper membrane-bound conformation and oligomeric state, and have membrane binding elements present. The success of the implicit solvation model suggests that hydrophobic interactions are usually sufficient to determine the spatial position of a protein in the membrane, even when electrostatic interactions or specific binding of lipids are substantial. Our results demonstrate that most peripheral proteins not only interact with the membrane surface, but penetrate through the interfacial region and reach the hydrocarbon interior, which is consistent with published experimental studies.


Journal of Chemical Information and Modeling | 2011

Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides and proteins in membranes

Irina D. Pogozheva; Henry I. Mosberg

A new computational approach to calculating binding energies and spatial positions of small molecules, peptides, and proteins in the lipid bilayer has been developed. The method combines an anisotropic solvent representation of the lipid bilayer and universal solvation model, which predicts transfer energies of molecules from water to an arbitrary medium with defined polarity properties. The universal solvation model accounts for hydrophobic, van der Waals, hydrogen-bonding, and electrostatic solute-solvent interactions. The lipid bilayer is represented as a fluid anisotropic environment described by profiles of dielectric constant (ε), solvatochromic dipolarity parameter (π*), and hydrogen bonding acidity and basicity parameters (α and β). The polarity profiles were calculated using published distributions of quasi-molecular segments of lipids determined by neutron and X-ray scattering for DOPC bilayer and spin-labeling data that define concentration of water in the lipid acyl chain region. The model also accounts for the preferential solvation of charges and polar groups by water and includes the effect of the hydrophobic mismatch for transmembrane proteins. The method was tested on calculations of binding energies and preferential positions in membranes for small-molecules, peptides and peripheral membrane proteins that have been experimentally studied. The new theoretical approach was implemented in a new version (2.0) of our PPM program and applied for the large-scale calculations of spatial positions in membranes of more than 1000 peripheral and integral proteins. The results of calculations are deposited in the updated OPM database ( http://opm.phar.umich.edu ).


Endocrinology | 2009

Functional Characterization and Structural Modeling of Obesity Associated Mutations in the Melanocortin 4 Receptor

Karen Tan; Irina D. Pogozheva; Giles S. H. Yeo; Dirk Hadaschik; Julia M. Keogh; Carrie Haskell-Leuvano; Stephen O'Rahilly; Henry I. Mosberg; I. Sadaf Farooqi

Mutations in the melanocortin 4 receptor (MC4R) gene are the most common known cause of monogenic human obesity. The MC4R gene was sequenced in 2000 subjects with severe early-onset obesity. We detected seven different nonsense and 19 nonsynonymous mutations in a total of 94 probands, some of which have been reported previously by others. We functionally characterized the 11 novel obesity associated missense mutations. Seven of these mutants (L54P, E61K, I69T, S136P, M161T, T162I, and I269N) showed impaired cell surface trafficking, reduced level of maximal binding of the radioligand [125I]NDP-MSH, and reduced ability to generate cAMP in response to ligand. Four mutant MC4Rs (G55V, G55D, S136F, and A303T) displayed cell surface expression and agonist binding similar to the wild-type receptor but showed impaired cAMP production, suggesting that these residues are likely to be critical for conformational rearrangement essential for receptor activation. Homology modeling of these mutants using a model of MC4R based on the crystal structure of the beta2-adrenoreceptor was used to provide insights into the possible structural basis for receptor dysfunction. Transmembrane (TM) domains 1, 3, 6, 7, and peripheral helix 8 appear to participate in the agonist-induced conformational rearrangement necessary for coupling of ligand binding to signaling. We conclude that G55V, G55D, S136F, and A303T mutations are likely to strengthen helix-helix interactions between TM1 and TM2, TM3 and TM6, and TM7 and helix 8, respectively, preventing relative movement of these helices during receptor activation. The combination of functional studies and structural modeling of naturally occurring pathogenic mutations in MC4R can provide valuable information regarding the molecular mechanism of MC4R activation and its dysfunction in human disease.


Journal of Pharmacology and Experimental Therapeutics | 2010

Pharmacological Chaperones Restore Function to MC4R Mutants Responsible for Severe Early-Onset Obesity

Patricia René; Christian Le Gouill; Irina D. Pogozheva; Gary Lee; Henry I. Mosberg; I. Sadaf Farooqi; Kenneth J. Valenzano; Michel Bouvier

Heterozygous null mutations in the melanocortin-4 receptor (MC4R) cause early-onset obesity in humans, indicating that metabolic homeostasis is sensitive to quantitative variation in MC4R function. Most of the obesity-causing MC4R mutations functionally characterized so far lead to intracellular retention of receptors by the cells quality control system. Thus, recovering cell surface expression of mutant MC4Rs could have a beneficial therapeutic value. We tested a pharmacological chaperone approach to restore cell surface expression and function of 10 different mutant forms of human melanocortin-4 receptor found in obese patients. Five cell-permeant MC4R-selective ligands were tested and displayed pharmacological chaperone activities, restoring cell surface targeting and function of the receptors with distinct efficacy profiles for the different mutations. Such mutation-specific efficacies suggested a structure-activity relationship between compounds and mutant receptor conformations that may open a path toward personalized therapy. In addition, one of the five pharmacological chaperones restored function to most of the mutant receptors tested. Combined with its ability to reach the central nervous system and its selectivity for the MC4R, this pharmacological chaperone may represent a candidate for the development of a targeted therapy suitable for a large subset of patients with MC4R-deficient obesity.


Nature Reviews Drug Discovery | 2009

Community-wide assessment of GPCR structure modelling and ligand docking

Mayako Michino; Enrique Abola; Charles L. Brooks; J. Scott Dixon; John Moult; Raymond C. Stevens; Arthur J. Olson; Wiktor Jurkowski; Arne Elofsson; Slawomir Filipek; Irina D. Pogozheva; Bernard Maigret; Jeremy A. Horst; Ambrish Roy; Brady Bernard; Shyamala Iyer; Yang Zhang; Ram Samudrala; Osman Ugur Sezerman; Gregory V. Nikiforovich; Christina M. Taylor; Stefano Costanzi; Y. Vorobjev; N. Bakulina; Victor V. Solovyev; Kazuhiko Kanou; Daisuke Takaya; Genki Terashi; Mayuko Takeda-Shitaka; Hideaki Umeyama

Recent breakthroughs in the determination of the crystal structures of G protein-coupled receptors (GPCRs) have provided new opportunities for structure-based drug design strategies targeting this protein family. With the aim of evaluating the current status of GPCR structure prediction and ligand docking, a community-wide, blind prediction assessment — GPCR Dock 2008 — was conducted in coordination with the publication of the crystal structure of the human adenosine A2A receptor bound to the ligand ZM241385. Twenty-nine groups submitted 206 structural models before the release of the experimental structure, which were evaluated for the accuracy of the ligand binding mode and the overall receptor model compared with the crystal structure. This analysis highlights important aspects for success and future development, such as accurate modelling of structurally divergent regions and use of additional biochemical insight such as disulphide bridges in the extracellular loops.


Journal of Medicinal Chemistry | 2009

Pentapeptides Displaying μ Opioid Receptor Agonist and δ Opioid Receptor Partial Agonist/Antagonist Properties

Lauren C. Purington; Irina D. Pogozheva; John R. Traynor; Henry I. Mosberg

Chronic use of mu-opioid agonists has been shown to cause neurochemical adaptations resulting in tolerance and dependence. While the analgesic effects of these drugs are mediated by mu-opioid receptors (MOR), several studies have shown that antagonism or knockdown of delta-opioid receptors (DOR) can lessen or prevent development of tolerance and dependence. On the basis of computational modeling of putative active and inactive conformations of MOR and DOR, we have synthesized a series of pentapeptides with the goal of developing a MOR agonist/DOR antagonist peptide with similar affinity at both receptors as a tool to probe functional opioid receptor interaction(s). The eight resulting naphthylalanine-substituted cyclic pentapeptides displayed variable mixed-efficacy profiles. The most promising peptide (9; Tyr-c(S-CH(2)-S)[D-Cys-Phe-2-Nal-Cys]NH(2)) displayed a MOR agonist and DOR partial agonist/antagonist profile and bound with equipotent affinity (K(i) approximately 0.5 nM) to both receptors, but also showed kappa opioid receptor (KOR) agonist activity.

Collaboration


Dive into the Irina D. Pogozheva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge