Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Dambueva is active.

Publication


Featured researches published by Irina Dambueva.


American Journal of Human Genetics | 2007

Phylogeographic analysis of mitochondrial DNA in northern Asian populations.

Miroslava Derenko; B. A. Malyarchuk; Tomasz Grzybowski; Galina Denisova; Irina Dambueva; Maria Perkova; Choduraa Dorzhu; Faina Luzina; Hong Kyu Lee; Tomas Vanecek; Richard Villems; I. A. Zakharov

To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ~7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia.


Annals of Human Genetics | 2003

Diversity of mitochondrial DNA lineages in South Siberia.

Miroslava Derenko; Tomasz Grzybowski; B. A. Malyarchuk; Irina Dambueva; Galina Denisova; J. Czarny; C. M. Dorzhu; V. T. Kakpakov; D. Miscicka-Sliwka; Marcin Wozniak; I. A. Zakharov

To investigate the origin and evolution of aboriginal populations of South Siberia, a comprehensive mitochondrial DNA (mtDNA) analysis (HVR1 sequencing combined with RFLP typing) of 480 individuals, representing seven Altaic‐speaking populations (Altaians, Khakassians, Buryats, Sojots, Tuvinians, Todjins and Tofalars), was performed. Additionally, HVR2 sequence information was obtained for 110 Altaians, providing, in particular, some novel details of the East Asian mtDNA phylogeny. The total sample revealed 81% East Asian (M*, M7, M8, M9, M10, C, D, G, Z, A, B, F, N9a, Y) and 17% West Eurasian (H, U, J, T, I, N1a, X) matrilineal genetic contribution, but with regional differences within South Siberia. The highest influx of West Eurasian mtDNAs was observed in populations from the East Sayan and Altai regions (from 12.5% to 34.5%), whereas in populations from the Baikal region this contribution was markedly lower (less than 10%). The considerable substructure within South Siberian haplogroups B, F, and G, together with the high degree of haplogroup C and D diversity revealed there, allows us to conclude that South Siberians carry the genetic imprint of early‐colonization phase of Eurasia. Statistical analyses revealed that South Siberian populations contain high levels of mtDNA diversity and high heterogeneity of mtDNA sequences among populations (Fst = 5.05%) that might be due to geography but not due to language and anthropological features.


Journal of Human Genetics | 2007

Y-chromosome haplogroup N dispersals from south Siberia to Europe

Miroslava Derenko; B. A. Malyarchuk; Galina Denisova; Marcin Wozniak; Tomasz Grzybowski; Irina Dambueva; I. A. Zakharov

AbstractIn order to reconstruct the history of Y-chromosome haplogroup (hg) N dispersals in north Eurasia, we have analyzed the diversity of microsatellite (STR) loci within two major hg N clades, N2 and N3, in a total sample of 1,438 males from 17 ethnic groups, mainly of Siberian and Eastern European origin. Based on STR variance analysis we observed that hg N3a is more diverse in Eastern Europe than in south Siberia. However, analysis of median networks showed that there are two STR subclusters of hg N3a, N3a1 and N3a2, that are characterized by different genetic histories. Age calculation of STR variation within subcluster N3a1 indicated that its first expansion occurred in south Siberia [approximately 10,000 years (ky)] and then this subcluster spread into Eastern Europe where its age is around 8 ky ago. Meanwhile, younger subcluster N3a2 originated in south Siberia (probably in the Baikal region) approximately 4 ky ago. Median network and variance analyses of STR haplotypes suggest that south Siberian N3a2 haplotypes spread further into Volga-Ural region undergoing serial bottlenecks. In addition, median network analysis of STR data demonstrates that haplogroup N2-A is represented by two subclusters, showing recent expansion times. The data obtained allow us to suggest Siberian origin of haplogroups N3 and N2 that are currently widespread in some populations of Eastern Europe.


PLOS ONE | 2010

Origin and post-glacial dispersal of mitochondrial DNA haplogroups C and D in northern Asia.

Miroslava Derenko; B. A. Malyarchuk; Tomasz Grzybowski; Galina Denisova; Urszula Rogalla; Maria Perkova; Irina Dambueva; I. G. Zakharov

More than a half of the northern Asian pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroups C and D, two of the most frequent haplogroups throughout northern, eastern, central Asia and America. While there has been considerable recent progress in studying mitochondrial variation in eastern Asia and America at the complete genome resolution, little comparable data is available for regions such as southern Siberia – the area where most of northern Asian haplogroups, including C and D, likely diversified. This gap in our knowledge causes a serious barrier for progress in understanding the demographic pre-history of northern Eurasia in general. Here we describe the phylogeography of haplogroups C and D in the populations of northern and eastern Asia. We have analyzed 770 samples from haplogroups C and D (174 and 596, respectively) at high resolution, including 182 novel complete mtDNA sequences representing haplogroups C and D (83 and 99, respectively). The present-day variation of haplogroups C and D suggests that these mtDNA clades expanded before the Last Glacial Maximum (LGM), with their oldest lineages being present in the eastern Asia. Unlike in eastern Asia, most of the northern Asian variants of haplogroups C and D began the expansion after the LGM, thus pointing to post-glacial re-colonization of northern Asia. Our results show that both haplogroups were involved in migrations, from eastern Asia and southern Siberia to eastern and northeastern Europe, likely during the middle Holocene.


Journal of Human Genetics | 2011

Ancient links between Siberians and Native Americans revealed by subtyping the Y chromosome haplogroup Q1a

B. A. Malyarchuk; Miroslava Derenko; Galina Denisova; Arkady Maksimov; Marcin Wozniak; Tomasz Grzybowski; Irina Dambueva; I. A. Zakharov

To investigate the structure of Y chromosome haplogroups R-M207 and Q-M242 in human populations of North Asia, we have performed high-resolution genotyping using both single nucleotide polymorphisms and short tandem repeat (STR)-based approaches of 121 M207- and M242-derived samples from 885 males of 16 ethnic groups of Siberia and East Asia. As a result, the following Y chromosome haplogroups were revealed: R1b1b1-M73 (2.0%), R1b1b2-M269 (0.7%), R2-M124 (1.1%), Q1a*-MEH2 (0.5%), Q1a2-M25 (0.1%), Q1a3*-M346 (9.2%) and Q1a3a-M3 (0.2%). Despite the low coalescence age of haplogroup Q1a3*-M346, which is estimated in South Siberia as about 4.5±1.5 thousand years ago (Ka), divergence time between these Q1a3*-M346 haplotypes and Amerindian-specific haplogroup Q1a3a-M3 is equal to 13.8±3.9 Ka, pointing to a relatively recent entry date to America. In addition, unique cluster of haplotypes belonging to Q1a*-MEH2 was found in Koryaks inhabiting the Sea of Okhotsk coast (at a frequency of 10.3%). Although the level of STR diversity associated with Q1a*-MEH2 is very low, this lineage appears to be closest to the extinct Palaeo-Eskimo individuals belonging to the Saqqaq culture arisen in the New World Arctic about 5.5 Ka. This finding suggests that Q1a*-MEH2 likely traces a population migration originating in Northeast Siberia across the Bering Strait.


PLOS ONE | 2012

Complete Mitochondrial DNA Analysis of Eastern Eurasian Haplogroups Rarely Found in Populations of Northern Asia and Eastern Europe

Miroslava Derenko; B. A. Malyarchuk; Galina Denisova; Maria Perkova; Urszula Rogalla; Tomasz Grzybowski; Elza Khusnutdinova; Irina Dambueva; I. A. Zakharov

With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin.


Annals of Human Genetics | 2010

Phylogeography of the Y-chromosome haplogroup C in northern Eurasia

B. A. Malyarchuk; Miroslava Derenko; Galina Denisova; Marcin Wozniak; Tomasz Grzybowski; Irina Dambueva; I. A. Zakharov

To reconstruct the phylogenetic structure of Y‐chromosome haplogroup (hg) C in populations of northern Eurasia, we have analyzed the diversity of microsatellite (STR) loci in a total sample of 413 males from 18 ethnic groups of Siberia, Eastern Asia and Eastern Europe. Analysis of SNP markers revealed that all Y‐chromosomes studied belong to hg C3 and its subhaplogroups C3c and C3d, although some populations (such as Mongols and Koryaks) demonstrate a relatively high input (more than 30%) of yet unidentified C3* haplotypes. Median joining network analysis of STR haplotypes demonstrates that Y‐chromosome gene pools of populations studied are characterized by the presence of DNA clusters originating from a limited number of frequent founder haplotypes. These are subhaplogroup C3d characteristic for Mongolic‐speaking populations, “star cluster” in C3* paragroup, and a set of DYS19 duplicated C3c Y‐chromosomes. All these DNA clusters show relatively recent coalescent times (less than 3000 years), so it is probable that founder effects, including social selection resulting in high male fertility associated with a limited number of paternal lineages, may explain the observed distribution of hg C3 lineages.


Russian Journal of Genetics | 2007

[Distribution of the male lineages of Genghis Khan's descendants in northern Eurasian populations].

Miroslava Derenko; B. A. Malyarchuk; Marcin Wozniak; Galina Denisova; Irina Dambueva; Ch. M. Dorzhu; Tomasz Grzybowski; I. A. Zakharov

Data on the variation of 12 microsatellite loci of Y-chromosome haplogroup C3 were used to screen lineages included in the cluster of Genghis Khan’s descendants in 18 northern Eurasian populations (Altaian Kazakhs, Altaians-Kizhi, Teleuts, Khakassians, Shorians, Tyvans, Todjins, Tofalars, Sojots, Buryats, Khamnigans, Evenks, Mongols, Kalmyks, Tajiks, Kurds, Persians, and Russians; the total sample size was 1437 people). The highest frequency of haplotypes from the cluster of the Genghis Khan’s descendants was found in Mongols (34.8%). In Russia, this cluster was found in Altaian Kazakhs (8.3%), Altaians (3.4%), Buryats (2.3%), Tyvans (1.9%), and Kalmyks (1.7%).


BMC Evolutionary Biology | 2014

Western Eurasian ancestry in modern Siberians based on mitogenomic data

Miroslava Derenko; B. A. Malyarchuk; Galina Denisova; Maria Perkova; Andrey Litvinov; Tomasz Grzybowski; Irina Dambueva; Katarzyna Skonieczna; Urszula Rogalla; Iosif S. Tsybovsky; I. A. Zakharov

BackgroundAlthough the genetic heritage of aboriginal Siberians is mostly of eastern Asian ancestry, a substantial western Eurasian component is observed in the majority of northern Asian populations. Traces of at least two migrations into southern Siberia, one from eastern Europe and the other from western Asia/the Caucasus have been detected previously in mitochondrial gene pools of modern Siberians.ResultsWe report here 166 new complete mitochondrial DNA (mtDNA) sequences that allow us to expand and re-analyze the available data sets of western Eurasian lineages found in northern Asian populations, define the phylogenetic status of Siberian-specific subclades and search for links between mtDNA haplotypes/subclades and events of human migrations. From a survey of 158 western Eurasian mtDNA genomes found in Siberia we estimate that nearly 40% of them most likely have western Asian and another 29% European ancestry. It is striking that 65 of northern Asian mitogenomes, i.e. ~41%, fall into 19 branches and subclades which can be considered as Siberian-specific being found so far only in Siberian populations. From the coalescence analysis it is evident that the sequence divergence of Siberian-specific subclades was relatively small, corresponding to only 0.6-9.5 kya (using the complete mtDNA rate) and 1-6 kya (coding region rate).ConclusionsThe phylogeographic analysis implies that the western Eurasian founders, giving rise to Siberian specific subclades, may trace their ancestry only to the early and mid-Holocene, though some of genetic lineages may trace their ancestry back to the end of Last Glacial Maximum (LGM). We have not found the modern northern Asians to have western Eurasian genetic components of sufficient antiquity to indicate traces of pre-LGM expansions.


Forensic Science International-genetics | 2015

A novel multiplex assay amplifying 13 Y-STRs characterized by rapid and moderate mutation rate.

Urszula Rogalla; Marcin Woźniak; Jacek Swobodziński; Miroslava Derenko; B. A. Malyarchuk; Irina Dambueva; Marek Koziński; Jacek Kubica; Tomasz Grzybowski

As microsatellites located on Y chromosome mutate with different rates, they may be exploited in evolutionary studies, genealogical testing of a variety of populations and even, as proven recently, aid individual identification. Currently available commercial Y-STR kits encompass mostly low to moderately mutating loci, making them a perfect choice for the first two applications. Some attempts have been made so far to utilize Y-STRs to provide a discriminatory tool for forensic purposes. Although all 13 rapidly mutating Y-STRs were already multiplexed, no single assay based on single-copy markers allowing at least a portion of close male relatives to be differentiated from one another is available. To fill in the blanks, we constructed and validated an assay comprised of single-copy Y-STR markers only with a mutation rate ranging from 8×10(-3) to 1×10(-2). Performance of the resulting combination of nine RM Y-STRs and four moderately mutating ones was tested on 361 father-son pairs and 1326 males from 9 populations revealing an overall mutation rate of 1.607×10(-1) for the assay as a whole. Application of the proposed 13 Y-STR set to differentiation of haplotypes present among homogenous population of Buryats resulted in a threefold increase of discrimination as compared with 10 Y-STRs from the PowerPlex(®) Y.

Collaboration


Dive into the Irina Dambueva's collaboration.

Top Co-Authors

Avatar

Miroslava Derenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

B. A. Malyarchuk

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomasz Grzybowski

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

I. A. Zakharov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Galina Denisova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marcin Wozniak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Maria Perkova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Urszula Rogalla

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

J. Czarny

Nicolaus Copernicus University in Toruń

View shared research outputs
Top Co-Authors

Avatar

Marcin Woźniak

Nicolaus Copernicus University in Toruń

View shared research outputs
Researchain Logo
Decentralizing Knowledge