Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Giurgea is active.

Publication


Featured researches published by Irina Giurgea.


Journal of Clinical Investigation | 2007

Prenyldiphosphate synthase, subunit 1 (PDSS1) and OH-benzoate polyprenyltransferase (COQ2) mutations in ubiquinone deficiency and oxidative phosphorylation disorders

Julie Mollet; Irina Giurgea; Dimitri Schlemmer; Gustav Dallner; Dominique Chretien; Agnès Delahodde; Delphine Bacq; Pascale de Lonlay; Arnold Munnich; Agnès Rötig

Coenzyme Q10 (CoQ10) plays a pivotal role in oxidative phosphorylation (OXPHOS), as it distributes electrons among the various dehydrogenases and the cytochrome segments of the respiratory chain. We have identified 2 novel inborn errors of CoQ10 biosynthesis in 2 distinct families. In both cases, enzymologic studies showed that quinone-dependent OXPHOS activities were in the range of the lowest control values, while OXPHOS enzyme activities were normal. CoQ10 deficiency was confirmed by restoration of normal OXPHOS activities after addition of quinone. A genome-wide search for homozygosity in family 1 identified a region of chromosome 10 encompassing the gene prenyldiphosphate synthase, subunit 1 (PDSS1), which encodes the human ortholog of the yeast COQ1 gene, a key enzyme of CoQ10 synthesis. Sequencing of PDSS1 identified a homozygous nucleotide substitution modifying a conserved amino acid of the protein (D308E). In the second family, direct sequencing of OH-benzoate polyprenyltransferase (COQ2), the human ortholog of the yeast COQ2 gene, identified a single base pair frameshift deletion resulting in a premature stop codon (c.1198delT, N401fsX415). Transformation of yeast Deltacoq1 and Deltacoq2 strains by mutant yeast COQ1 and mutant human COQ2 genes, respectively, resulted in defective growth on respiratory medium, indicating that these mutations are indeed the cause of OXPHOS deficiency.


Journal of Medical Genetics | 2004

Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome

Paule Bénit; Abdelhamid Slama; F Cartault; Irina Giurgea; Dominique Chretien; Sophie Lebon; C Marsac; Arnold Munnich; Agnès Rötig; Pierre Rustin

Respiratory chain complex I deficiency represents a genetically heterogeneous group of diseases resulting from mutations in mitochondrial or nuclear genes. Mutations have been reported in 13 of the 14 subunits encoding the core of complex I (seven mitochondrial and six nuclear genes) and these result in Leigh or Leigh-like syndromes or cardiomyopathy. In this study, a combination of denaturing high performance liquid chromatography and sequence analysis was used to study the NDUFS3 gene in a series of complex I deficient patients. Mutations found in this gene (NADH dehydrogenase iron-sulphur protein 3), coding for the seventh and last subunit of complex I core, were shown to cause late onset Leigh syndrome, optic atrophy, and complex I deficiency. A biochemical diagnosis of complex I deficiency on cultured amniocytes from a later pregnancy was confirmed through the identification of disease causing NDUFS3 mutations in these cells. While mutations in the NDUFS3 gene thus result in Leigh syndrome, a dissimilar clinical phenotype is observed in mutations in the NDUFV2 and NDUFS2 genes, resulting in encephalomyopathy and cardiomyopathy. The reasons for these differences are uncertain.


Journal of Medical Genetics | 2003

Recurrent de novo mitochondrial DNA mutations in respiratory chain deficiency

Sophie Lebon; M Chol; Paule Bénit; Claude Mugnier; Dominique Chretien; Irina Giurgea; Ilse Kern; Eric Girardin; Lucie Hertz-Pannier; P. de Lonlay; Agnès Rötig; Pierre Rustin; Arnold Munnich

Starting from a cohort of 50 NADH-oxidoreductase (complex I) deficient patients, we carried out the systematic sequence analysis of all mitochondrially encoded complex I subunits (ND1 to ND6 and ND4L) in affected tissues. This approach yielded the unexpectedly high rate of 20% mutation identification in our series. Recurrent heteroplasmic mutations included two hitherto unreported (T10158C and T14487C) and three previously reported mutations (T10191C, T12706C and A13514G) in children with Leigh or Leigh-like encephalopathy. The recurrent mutations consistently involved T→C transitions (p<10−4). This study supports the view that an efficient molecular screening should be based on an accurate identification of respiratory chain enzyme deficiency.


PLOS ONE | 2008

Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion

Mar Gonzalez-Barroso; Irina Giurgea; Frédéric Bouillaud; Andrea Anedda; Christine Bellanné-Chantelot; Laurence Hubert; Pascale de Lonlay; Daniel Ricquier

Although the most common mechanism underlying congenital hyperinsulinism is dysfunction of the pancreatic ATP-sensitive potassium channel, the pathogenesis and genetic origins of this disease remains largely unexplained in more than half of all patients. UCP2 knockout mice exhibit an hyperinsulinemic hypoglycemia, suggesting an involment of UCP2 in insulin secretion. However, a possible pathogenic role for UCP2 protein in the development of human congenital hyperinsulinism or of any human disease has not yet been investigated. We studied ten children exhibiting congenital hyperinsulinism, without detectable mutations in the known congenital hyperinsulinism-causing genes. Parental-inherited heterozygous UCP2 variants encoding amino-acid changes were found in two unrelated children with congenital hyperinsulinism. Functional assays in yeast and in insulin-secreting cells revealed an impaired activity of UCP2 mutants. Therefore, we report the finding of UCP2 coding variants in human congenital hyperinsulinism, which reveals a role for this gene in the regulation of insulin secretion and glucose metabolism in humans. Our results show for the first time a direct association between UCP2 amino acid alteration and human disease and highlight a role for mitochondria in hormone secretion.


Human Mutation | 2012

Novel comprehensive diagnostic strategy in Pitt–Hopkins syndrome: Clinical score and further delineation of the TCF4 mutational spectrum

Sandra Whalen; Delphine Héron; Thierry Gaillon; Oana Moldovan; Massimiliano Rossi; Franc Oise Devillard; Fabienne Giuliano; Gabriela Soares; Michelle Mathieu-Dramard; Alexandra Afenjar; Perrine Charles; Cyril Mignot; Lydie Burglen; Lionel Van Maldergem; Juliette Piard; Salim Aftimos; Grazia M.S. Mancini; Patrícia Dias; Nicole Philip; Alice Goldenberg; Martine Le Merrer; Marlène Rio; Dragana Josifova; Johanna M. van Hagen; Didier Lacombe; Patrick Edery; Sophie Dupuis-Girod; Audrey Putoux; Damien Sanlaville; Richard Fischer

Pitt–Hopkins syndrome (PTHS), characterized by severe intellectual disability and typical facial gestalt, is part of the clinical spectrum of Rett‐like syndromes. TCF4, encoding a basic helix‐loop‐helix (bHLH) transcription factor, was identified as the disease‐causing gene with de novo molecular defects. While PTHS appears to be a recognizable clinical entity, it seems to remain underdiagnosed, especially when facial gestalt is less typical. With the aim to facilitate the diagnosis of PTHS and to increase its rate and specificity, we have investigated 33 novel patients and defined a Clinical Diagnosis Score. Analysis of 112 individuals (79 previously reported and 33 novel patients) allowed us to delineate the TCF4 mutational spectrum, with 40% point mutations, 30% small deletions/insertions, and 30% deletions. Most of these were private mutations and generated premature stop codons. Missense mutations were localized in the bHLH domain, which is a mutational hotspot. No obvious difference was observed between patients harboring truncating, missense mutations, or deletions, further supporting TCF4 haploinsufficiency as the molecular mechanism underlying PTHS. In this study, we have summarized the current knowledge of TCF4 molecular pathology, reported all the mutations in the TCF4 database (http://www.LOVD.nl/TCF4), and present a novel and comprehensive diagnostic strategy for PTHS. Hum Mutat 33:64–72, 2012.


European Journal of Human Genetics | 2009

BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects

Emma Hilton; Jennifer J. Johnston; Sandra Whalen; Nobuhiko Okamoto; Yoshikazu Hatsukawa; Juntaro Nishio; Hiroshi Kohara; Yoshiko Hirano; Seiji Mizuno; Chiharu Torii; Kenjiro Kosaki; Sylvie Manouvrier; Odile Boute; Rahat Perveen; Caroline Law; Anthony T. Moore; David Fitzpatrick; Johannes R. Lemke; Florence Fellmann; François-Guillaume Debray; Florence Dastot-Le-Moal; Marion Gerard; Josiane Martin; Pierre Bitoun; Michel Goossens; Alain Verloes; Albert Schinzel; Deborah Bartholdi; Tanya Bardakjian; Beverly N. Hay

Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked (‘Lenz’) microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects.


Human Mutation | 2008

TCF4 Deletions in Pitt-Hopkins Syndrome†

Irina Giurgea; Chantal Missirian; Pierre Cacciagli; Sandra Whalen; Tessa Fredriksen; Thierry Gaillon; Julia Rankin; Michèle Mathieu-Dramard; Gilles Morin; Dominique Martin-Coignard; Christèle Dubourg; Brigitte Chabrol; Jacqueline Arfi; Fabienne Giuliano; Jean Claude Lambert; Nicole Philip; Pierre Sarda; Laurent Villard; Michel Goossens; Anne Moncla

Pitt‐Hopkins syndrome (PHS) is a probably underdiagnosed, syndromic mental retardation disorder, marked by hyperventilation episodes and characteristic dysmorphism (large beaked nose, wide mouth, fleshy lips, and clubbed fingertips). PHS was shown to be caused by de novo heterozygous mutations of the TCF4 gene, located in 18q21. We selected for this study 30 unrelated patients whose phenotype overlapped PHS but which had been initially addressed for Angelman, Mowat‐Wilson, or Rett syndromes. In 10 patients we identified nine novel mutations (four large cryptic deletions, including one in mosaic, and five small deletions), and a recurrent one. So far, a total of 20 different TCF4 gene mutations have been reported, most of which either consist in deletion of significant portions of the TCF4 coding sequence, or generate premature stop codons. No obvious departure was observed between the patients harboring point mutations and large deletions at the 18q21 locus, further supporting TCF4 haploinsufficiency as the molecular mechanism underling PHS. In this report, we also further specify the phenotypic spectrum of PHS, enlarged to behavior, with aim to increase the rate and specificity of PHS diagnosis.


Pediatrics | 2005

Factitious hyperinsulinism leading to pancreatectomy: severe forms of Munchausen syndrome by proxy

Irina Giurgea; Tim Ulinski; Guy Touati; Christine Sempoux; Fanny Mochel; Francis Brunelle; Jean-Marie Saudubray; Claire Fekete; Pascale de Lonlay

Clinical history and inappropriate insulin secretion during hypoglycemic episodes permit the diagnosis of hyperinsulinism. We report 2 cases of factitious hyperinsulinism leading to partial pancreatectomy. Case 1 was an 8-year-old girl who presented with severe hypoglycemia and elevated insulin and C-peptide levels. Catheterization of pancreatic veins was performed to localize the excess insulin secretion. Insulinoma was suspected, and partial pancreatectomy was performed. Ten days after surgery, severe hypoglycemia recurred with severely elevated plasma insulin levels (×100) but very low C-peptide plasma levels, suggesting factitious hyperinsulinemia. Hypoglycemic episodes before surgery were provoked by oral sulfonamides; postoperative episodes were caused by parenteral insulin. Falsified prescriptions for sulfonamides and insulin by the mother, a nurse, were found. Case 2 was a 6-month-old girl who presented with seizures and hypoglycemia but had a symptom-free interval of many months afterward. At 2 years of age, repeated hypoglycemic seizures and elevated insulin plasma levels suggested congenital hyperinsulinism. C-peptide plasma level, measured once, was normal, but blood sampling was performed 15 minutes after a hypoglycemic episode. Partial pancreatectomy was performed. Two weeks after surgery, hypoglycemic seizures recurred, and the patient was admitted for pancreatic vein catheterization. This investigation was performed during hypoglycemia and revealed high insulin levels and undetectable C-peptide levels, suggesting factitious hypoglycemia. Insulin/C-peptide ratio analysis is crucial to assess factitious hypoglycemia, although sulfonamide-induced hypoglycemia is not thereby detected. One percent (2 of 250) of all cases of hyperinsulinemic hypoglycemia in our unit have been identified as Munchausen syndrome by proxy. Atypical disease history should raise the question of factitious hypoglycemia.


Journal of Medical Genetics | 2005

Congenital hyperinsulinism and mosaic abnormalities of the ploidy

Irina Giurgea; Damien Sanlaville; J-C Fournet; Christine Sempoux; C. Bellanné-Chantelot; Guy Touati; Laurence Hubert; M-S Groos; Francis Brunelle; Jacques Rahier; Jean-Claude Henquin; Mark J. Dunne; Francis Jaubert; J.-J. Robert; Claire Nihoul-Fékété; Michel Vekemans; Claudine Junien; P. de Lonlay

Background: Congenital hyperinsulinism and Beckwith-Wiedemann syndrome both lead to β islet hyperplasia and neonatal hypoglycaemia. They may be related to complex genetic/epigenetic abnormalities of the imprinted 11p15 region. The possibility of common pathophysiological determinants has not been thoroughly investigated. Objective: To report abnormalities of the ploidy in two unrelated patients with congenital hyperinsulinism. Methods: Two patients with severe congenital hyperinsulinism, one overlapping with Beckwith-Wiedemann syndrome, had pancreatic histology, ex vivo potassium channel electrophysiological studies, and mutation detection of the encoding genes. The parental genetic contribution was explored using genome-wide polymorphism, fluorescent in situ hybridisation (FISH), and blood group typing studies. Results: Histological findings diverged from those described in focal congenital hyperinsulinism or Beckwith-Wiedemann syndrome. No potassium channel dysfunction and no mutation of its encoding genes (SUR1, KIR6.2) were detected. In patient 1 with congenital hyperinsulinism and Beckwith-Wiedemann syndrome, paternal isodisomy for the whole haploid set was homogeneous in the pancreatic lesion, and mosaic in the leucocytes and skin fibroblasts (hemihypertrophic segment). Blood group typing confirmed the presence of two erythroid populations (bi-parental v paternal only contribution). Patient 2 had two pancreatic lesions, both revealing triploidy with paternal heterodisomy. Karyotype and FISH analyses done on the fibroblasts and leucocytes of both patients were unremarkable (diploidy). Conclusions: Diploid (biparental/paternal-only) mosaicism and diploid/triploid mosaicism were present in two distinct patients with congenital hyperinsulinism. These chromosomal abnormalities led to paternal disomy for the whole haploid set in pancreatic lesions (with isodisomy or heterodisomy), thereby extending the range and complexity of the mechanisms underlying congenital hyperinsulinism, associated or not with Beckwith-Wiedemann syndrome.


Journal of Medical Genetics | 2006

Prenatal diagnosis of myopathy, encephalopathy, lactic acidosis, and stroke-like syndrome: contribution to understanding mitochondrial DNA segregation during human embryofetal development

Céline Bouchet; Julie Steffann; Johanna Corcos; Sophie Monnot; Véronique Paquis; Agnès Rötig; Sophie Lebon; Pascale Levy; Ghislaine Royer; Irina Giurgea; Nadine Gigarel; Alexandra Benachi; Yves Dumez; Arnold Munnich; Jean Paul Bonnefont

Introduction: Myopathy, encephalopathy, lactic acidosis, and stroke-like (MELAS) syndrome, a maternally inherited disorder that is among the most common mitochondrial DNA (mtDNA) diseases, is usually associated with the m.3242A>G mutation of the mitochondrial tRNAleu gene. Very few data are available with respect to prenatal diagnosis of this serious disease. The rate of mutant versus wild-type mtDNA (heteroplasmy) in fetal DNA is indeed considered to be a poor indicator of postnatal outcome. Materials and methods: Taking advantage of a novel semi-quantitative polymerase chain reaction test for m.3243A>G mutant load assessment, we carried out nine prenatal diagnoses in five unrelated women, using two different fetal tissues (chorionic villi v amniocytes) sampled at two or three different stages of pregnancy. Results: Two of the five women, although not carrying m.3243A>G in blood or extra-blood tissues, were, however, considered at risk for transmission of the mutation, as they were closely related to MELAS-affected individuals. The absence of 3243A>G in the blood of first degree relatives was associated with no mutated mtDNA in the cardiovascular system (CVS) or amniocytes, and their three children are healthy, with a follow-up of 3 months–3 years. Among the six fetuses from the three carrier women, three were shown to be homoplasmic (0% mutant load), the remaining three being heteroplasmic, with a mutant load ranging from 23% to 63%. The fetal mutant load was fairly stable at two or three different stages of pregnancy in CVS and amniocytes. Although pregnancy was terminated in the case of the fetus with a 63% mutant load, all other children are healthy with a follow-up of 3 months–6 years. Conclusion: These data suggest that a prenatal diagnosis for MELAS syndrome might be helpful for at-risk families.

Collaboration


Dive into the Irina Giurgea's collaboration.

Top Co-Authors

Avatar

Pascale de Lonlay

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Francis Brunelle

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Claire Nihoul-Fékété

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Francis Jaubert

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Guy Touati

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Agnès Rötig

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Arnold Munnich

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

P. de Lonlay

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar

Jacques Rahier

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

J. M. Saudubray

Necker-Enfants Malades Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge