Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Kalatskaya is active.

Publication


Featured researches published by Irina Kalatskaya.


Nucleic Acids Research | 2011

Reactome: a database of reactions, pathways and biological processes

David Croft; Gavin O’Kelly; Guanming Wu; Robin Haw; Marc Gillespie; Lisa Matthews; Michael Caudy; Phani Garapati; Gopal Gopinath; Bijay Jassal; Steven Jupe; Irina Kalatskaya; Shahana Mahajan; Bruce May; Nelson Ndegwa; Esther Schmidt; Veronica Shamovsky; Christina K. Yung; Ewan Birney; Henning Hermjakob; Peter D’Eustachio; Lincoln Stein

Reactome (http://www.reactome.org) is a collaboration among groups at the Ontario Institute for Cancer Research, Cold Spring Harbor Laboratory, New York University School of Medicine and The European Bioinformatics Institute, to develop an open source curated bioinformatics database of human pathways and reactions. Recently, we developed a new web site with improved tools for pathway browsing and data analysis. The Pathway Browser is an Systems Biology Graphical Notation (SBGN)-based visualization system that supports zooming, scrolling and event highlighting. It exploits PSIQUIC web services to overlay our curated pathways with molecular interaction data from the Reactome Functional Interaction Network and external interaction databases such as IntAct, BioGRID, ChEMBL, iRefIndex, MINT and STRING. Our Pathway and Expression Analysis tools enable ID mapping, pathway assignment and overrepresentation analysis of user-supplied data sets. To support pathway annotation and analysis in other species, we continue to make orthology-based inferences of pathways in non-human species, applying Ensembl Compara to identify orthologs of curated human proteins in each of 20 other species. The resulting inferred pathway sets can be browsed and analyzed with our Species Comparison tool. Collaborations are also underway to create manually curated data sets on the Reactome framework for chicken, Drosophila and rice.


Clinical Cancer Research | 2011

Early G1 cyclin-dependent kinases as prognostic markers and potential therapeutic targets in esophageal adenocarcinoma

Amin Ismail; Santhoshi Bandla; Marie Reveiller; Liana Toia; Zhongren Zhou; William E. Gooding; Irina Kalatskaya; Lincoln Stein; Mary D'Souza; Virginia R. Litle; Jeffrey H. Peters; Arjun Pennathur; James D. Luketich; Tony E. Godfrey

Purpose: Chromosomal gain at 7q21 is a frequent event in esophageal adenocarcinoma (EAC). However, this event has not been mapped with fine resolution in a large EAC cohort, and its association with clinical endpoints and functional relevance are unclear. Experimental Design: We used a cohort of 116 patients to fine map the 7q21 amplification using SNP microarrays. Prognostic significance and functional role of 7q21 amplification and its gene expression were explored. Results: Amplification of the 7q21 region was observed in 35% of tumors with a focal, minimal amplicon containing six genes. 7q21 amplification was associated with poor survival and analysis of gene expression identified cyclin-dependent kinase 6 (CDK6) as the only gene in the minimal amplicon whose expression was also associated with poor survival. A low-level amplification (10%) was observed at the 12q13 region containing the CDK6 homologue cyclin-dependent kinase 4 (CDK4). Both amplification and expression of CDK4 correlated with poor survival. A combined model of both CDK6 and CDK4 expressions is a superior predictor of survival than either alone. Specific knockdown of CDK4 and/or CDK6 by siRNAs shows that they are required for proliferation of EAC cells and that their function is additive. PD-0332991 targets the kinase activity of both molecules and suppresses proliferation and anchorage independence of EAC cells through activation of the pRB pathway. Conclusions: We suggest that CDK6 is the driver of 7q21 amplification and that both CDK4 and CDK6 are prognostic markers and bona fide oncogenes in EAC. Targeting these molecules may constitute a viable new therapy for this disease. Clin Cancer Res; 17(13); 4513–22. ©2011 AACR.


Molecular and Cellular Biology | 2012

Expression Profiling during Mammary Epithelial Cell Three-Dimensional Morphogenesis Identifies PTPRO as a Novel Regulator of Morphogenesis and ErbB2-Mediated Transformation

Min Yu; Guang Lin; Niloofar Arshadi; Irina Kalatskaya; Bin Xue; Syed Haider; Francis Nguyen; Paul C. Boutros; Ari Elson; Lakshmi Muthuswamy; Nicholas K. Tonks; Senthil K. Muthuswamy

ABSTRACT Identification of genes that are upregulated during mammary epithelial cell morphogenesis may reveal novel regulators of tumorigenesis. We have demonstrated that gene expression programs in mammary epithelial cells grown in monolayer cultures differ significantly from those in three-dimensional (3D) cultures. We identify a protein tyrosine phosphate, PTPRO, that was upregulated in mature MCF-10A mammary epithelial 3D structures but had low to undetectable levels in monolayer cultures. Downregulation of PTPRO by RNA interference inhibited proliferation arrest during morphogenesis. Low levels of PTPRO expression correlated with reduced survival for breast cancer patients, suggesting a tumor suppressor function. Furthermore, we showed that the receptor tyrosine kinase ErbB2/HER2 is a direct substrate of PTPRO and that loss of PTPRO increased ErbB2-induced cell proliferation and transformation, together with tyrosine phosphorylation of ErbB2. Moreover, in patients with ErbB2-positive breast tumors, low PTPRO expression correlated with poor clinical prognosis compared to ErbB2-positive patients with high levels of PTPRO. Thus, PTPRO is a novel regulator of ErbB2 signaling, a potential tumor suppressor, and a novel prognostic marker for patients with ErbB2-positive breast cancers. We have identified the protein tyrosine phosphatase PTPRO as a regulator of three-dimensional epithelial morphogenesis of mammary epithelial cells and as a regulator of ErbB2-mediated transformation. In addition, we demonstrated that ErbB2 is a direct substrate of PTPRO and that decreased expression of PTPRO predicts poor prognosis for ErbB2-positive breast cancer patients. Thus, our results identify PTPRO as a novel regulator of mammary epithelial transformation, a potential tumor suppressor, and a predictive biomarker for breast cancer.


Breast Cancer Research | 2012

Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells

Jason A. Sprowl; Kerry Reed; Stephen R Armstrong; Carita Lannér; Baoqing Guo; Irina Kalatskaya; Lincoln Stein; Stacey L. Hembruff; Adam Tam; Amadeo M. Parissenti

IntroductionThe taxanes paclitaxel and docetaxel are widely used in the treatment of breast, ovarian, and other cancers. Although their cytotoxicity has been attributed to cell-cycle arrest through stabilization of microtubules, the mechanisms by which tumor cells die remains unclear. Paclitaxel has been shown to induce soluble tumor necrosis factor alpha (sTNF-α) production in macrophages, but the involvement of TNF production in taxane cytotoxicity or resistance in tumor cells has not been established. Our study aimed to correlate alterations in the TNF pathway with taxane cytotoxicity and the acquisition of taxane resistance.MethodsMCF-7 cells or isogenic drug-resistant variants (developed by selection for surviving cells in increasing concentrations of paclitaxel or docetaxel) were assessed for sTNF-α production in the absence or presence of taxanes by enzyme-linked immunosorbent assay (ELISA) and for sensitivity to docetaxel or sTNF-α by using a clonogenic assay (in the absence or presence of TNFR1 or TNFR2 neutralizing antibodies). Nuclear factor (NF)-κB activity was also measured with ELISA, whereas gene-expression changes associated with docetaxel resistance in MCF-7 and A2780 cells were determined with microarray analysis and quantitative reverse transcription polymerase chain reaction (RTqPCR).ResultsMCF-7 and A2780 cells increased production of sTNF-α in the presence of taxanes, whereas docetaxel-resistant variants of MCF-7 produced high levels of sTNF-α, although only within a particular drug-concentration threshold (between 3 and 45 nM). Increased production of sTNF-α was NF-κB dependent and correlated with decreased sensitivity to sTNF-α, decreased levels of TNFR1, and increased survival through TNFR2 and NF-κB activation. The NF-κB inhibitor SN-50 reestablished sensitivity to docetaxel in docetaxel-resistant MCF-7 cells. Gene-expression analysis of wild-type and docetaxel-resistant MCF-7, MDA-MB-231, and A2780 cells identified changes in the expression of TNF-α-related genes consistent with reduced TNF-induced cytotoxicity and activation of NF-κB survival pathways.ConclusionsWe report for the first time that taxanes can promote dose-dependent sTNF-α production in tumor cells at clinically relevant concentrations, which can contribute to their cytotoxicity. Defects in the TNF cytotoxicity pathway or activation of TNF-dependent NF-κB survival genes may, in contrast, contribute to taxane resistance in tumor cells. These findings may be of strong clinical significance.


Annals of Surgery | 2012

Bile exposure inhibits expression of squamous differentiation genes in human esophageal epithelial cells.

Marie Reveiller; Sayak Ghatak; Liana Toia; Irina Kalatskaya; Lincoln Stein; Mary D'Souza; Zhongren Zhou; Santhoshi Bandla; William E. Gooding; Tony E. Godfrey; Jeffrey H. Peters

Objective:This study aimed to identify pathways and cellular processes that are modulated by exposure of normal esophageal cells to bile and acid. Background:Barretts esophagus most likely develops as a response of esophageal stem cells to the abnormal reflux environment. Although insights into the underlying molecular mechanisms are slowly emerging, much of the metaplastic process remains unknown. Methods:We performed a global analysis of gene expression in normal squamous esophageal cells in response to bile or acid exposure. Differentially expressed genes were classified into major biological functions using pathway analysis and interaction network software. Array data were verified by quantitative PCR and western blot both in vitro and in human esophageal biopsies. Results:Bile modulated expression of 202 genes, and acid modulated expression of 103 genes. Genes involved in squamous differentiation formed the largest functional group (n = 45) all of which were downregulated by bile exposure. This included genes such as involucrin (IVL), keratinocyte differentiation-associated protein (KRTDAP), grainyhead-like 1 (GRHL1), and desmoglein1 (DSG1) the downregulation of which was confirmed by quantitative PCR and western blot. Bile also caused expression changes in genes involved in cell adhesion, DNA repair, oxidative stress, cell cycle, Wnt signaling, and lipid metabolism. Analysis of human esophageal biopsies demonstrated greatly reduced expression of IVL, KRTDAP, DSG1, and GRHL1 in metaplastic compared to squamous epithelia. Conclusions:We report for the first time that bile inhibits the squamous differentiation program of esophageal epithelial cells. This, coordinated with induction of genes driving intestinal differentiation, may be required for the development of Barretts esophagus.


Journal of Pharmacology and Experimental Therapeutics | 2013

Interruption of the ionic lock in the bradykinin B2 receptor results in constitutive internalization and turns several antagonists into strong agonists

Jasmin Leschner; Goeran Wennerberg; Jens Feierler; Marcel Bermudez; Benjamin Welte; Irina Kalatskaya; Gerhard Wolber; Alexander Faussner

The DRY motif with the highly conserved R3.50 is a hallmark of family A G protein-coupled receptors (GPCRs). The crystal structure of rhodopsin revealed a salt bridge between R1353.50 and another conserved residue, E2476.30, in helix 6. This ionic lock was shown to maintain rhodopsin in its inactive state. Thus far, little information is available on how interruption of this ionic bond affects signaling properties of nonrhodopsin GPCRs, because the focus has been on mutations of R3.50, although this residue is indispensable for G protein activation. To investigate the importance of an ionic lock for overall receptor activity in a nonrhodopsin GPCR, we mutated R1283.50 and E2386.30 in the bradykinin (BK) B2 receptor (B2R) and stably expressed the constructs in HEK293 cells. As expected, mutation of R3.50 resulted in lack of G protein activation. In addition, this mutation led to considerable constitutive receptor internalization. Mutation of E6.30 (mutants E6.30A and E6.30R) also caused strong constitutive internalization. Most intriguingly, however, although the two E6.30 mutants displayed no increased basal phosphatidylinositol hydrolysis, they gave a response to three different B2R antagonists that was almost comparable to that obtained with BK. In contrast, swapping of R3.50 and E6.30, thus allowing the formation of an inverse ionic bond, resulted in rescue of the wild type phenotype. These findings demonstrate for the first time, to our knowledge, that interruption of the ionic lock in a family A GPCR can have distinctly different effects on receptor internalization and G protein stimulation, shedding new light on its role in the activation process.


Genome Medicine | 2013

Pathprinting: An integrative approach to understand the functional basis of disease

Gabriel Altschuler; Oliver Hofmann; Irina Kalatskaya; Rebecca Payne; Shannan J. Ho Sui; Uma Saxena; Andrei V. Krivtsov; Scott A. Armstrong; Tianxi Cai; Lincoln Stein; Winston Hide

New strategies to combat complex human disease require systems approaches to biology that integrate experiments from cell lines, primary tissues and model organisms. We have developed Pathprint, a functional approach that compares gene expression profiles in a set of pathways, networks and transcriptionally regulated targets. It can be applied universally to gene expression profiles across species. Integration of large-scale profiling methods and curation of the public repository overcomes platform, species and batch effects to yield a standard measure of functional distance between experiments. We show that pathprints combine mouse and human blood developmental lineage, and can be used to identify new prognostic indicators in acute myeloid leukemia. The code and resources are available at http://compbio.sph.harvard.edu/hidelab/pathprint


Annals of the New York Academy of Sciences | 2016

Overview of major molecular alterations during progression from Barrett's esophagus to esophageal adenocarcinoma.

Irina Kalatskaya

Esophageal adenocarcinoma (EAC) develops in the sequential transformation of normal epithelium into metaplastic epithelium, called Barretts esophagus (BE), then to dysplasia, and finally cancer. BE is a common condition in which normal stratified squamous epithelium of the esophagus is replaced with an intestine‐like columnar epithelium, and it is the most prominent risk factor for EAC. This review aims to impartially systemize the knowledge from a large number of publications that describe the molecular and biochemical alterations occurring over this progression sequence. In order to provide an unbiased extraction of the knowledge from the literature, a text‐mining methodology was used to select genes that are involved in the BE progression, with the top candidate genes found to be TP53, CDKN2A, CTNNB1, CDH1, GPX3, and NOX5. In addition, sample frequencies across analyzed patient cohorts at each stage of disease progression are summarized. All six genes are altered in the majority of EAC patients, and accumulation of alterations correlates well with the sequential progression of BE to cancer, indicating that the text‐mining method is a valid approach for gene prioritization. This review discusses how, besides being cancer drivers, these genes are functionally interconnected and might collectively be considered a central hub of BE progression.


Genome Medicine | 2017

ISOWN: accurate somatic mutation identification in the absence of normal tissue controls

Irina Kalatskaya; Quang M. Trinh; Melanie Spears; John D. McPherson; John M.S. Bartlett; Lincoln Stein

BackgroundA key step in cancer genome analysis is the identification of somatic mutations in the tumor. This is typically done by comparing the genome of the tumor to the reference genome sequence derived from a normal tissue taken from the same donor. However, there are a variety of common scenarios in which matched normal tissue is not available for comparison.ResultsIn this work, we describe an algorithm to distinguish somatic single nucleotide variants (SNVs) in next-generation sequencing data from germline polymorphisms in the absence of normal samples using a machine learning approach. Our algorithm was evaluated using a family of supervised learning classifications across six different cancer types and ~1600 samples, including cell lines, fresh frozen tissues, and formalin-fixed paraffin-embedded tissues; we tested our algorithm with both deep targeted and whole-exome sequencing data. Our algorithm correctly classified between 95 and 98% of somatic mutations with F1-measure ranges from 75.9 to 98.6% depending on the tumor type. We have released the algorithm as a software package called ISOWN (Identification of SOmatic mutations Without matching Normal tissues).ConclusionsIn this work, we describe the development, implementation, and validation of ISOWN, an accurate algorithm for predicting somatic mutations in cancer tissues in the absence of matching normal tissues. ISOWN is available as Open Source under Apache License 2.0 from https://github.com/ikalatskaya/ISOWN.


BMC Molecular Biology | 2017

Splicing arrays reveal novel RBM10 targets, including SMN2 pre-mRNA

Leslie C. Sutherland; Philippe Thibault; Mathieu Durand; Elvy Lapointe; Jose M. Knee; Ariane Beauvais; Irina Kalatskaya; Sarah C. Hunt; Julie J. Loiselle; Justin G. Roy; Sarah J. Tessier; Gustavo Ybazeta; Lincoln Stein; Rashmi Kothary; Roscoe Klinck; Benoit Chabot

BackgroundRBM10 is an RNA binding protein involved in message stabilization and alternative splicing regulation. The objective of the research described herein was to identify novel targets of RBM10-regulated splicing. To accomplish this, we downregulated RBM10 in human cell lines, using small interfering RNAs, then monitored alternative splicing, using a reverse transcription-PCR screening platform.ResultsRBM10 knockdown (KD) provoked alterations in splicing events in 10–20% of the pre-mRNAs, most of which had not been previously identified as RBM10 targets. Hierarchical clustering of the genes affected by RBM10 KD revealed good conservation of alternative exon inclusion or exclusion across cell lines. Pathway annotation showed RAS signaling to be most affected by RBM10 KD. Of particular interest was the finding that splicing of SMN pre-mRNA, encoding the survival of motor neuron (SMN) protein, was influenced by RBM10 KD. Inhibition of RBM10 resulted in preferential expression of the full-length, exon 7 retaining, SMN transcript in four cancer cell lines and one normal skin fibroblast cell line. SMN protein is expressed from two genes, SMN1 and SMN2, but the SMN1 gene is homozygously disrupted in people with spinal muscular atrophy; as a consequence, all of the SMN that is expressed in people with this disease is from the SMN2 gene. Expression analyses using primary fibroblasts from control, carrier and spinal muscle atrophy donors demonstrated that RBM10 KD resulted in preferential expression of the full-length, exon 7 retaining, SMN2 transcript. At the protein level, upregulation of the full-length SMN2 was also observed. Re-expression of RBM10, in a stable RBM10 KD cancer cell line, correlated with a reversion of the KD effect, demonstrating specificity.ConclusionOur work has not only expanded the number of pre-mRNA targets for RBM10, but identified RBM10 as a novel regulator of SMN2 alternative inclusion.

Collaboration


Dive into the Irina Kalatskaya's collaboration.

Top Co-Authors

Avatar

Lincoln Stein

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul C. Boutros

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melanie Spears

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liana Toia

University of Rochester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary D'Souza

University of Rochester

View shared research outputs
Researchain Logo
Decentralizing Knowledge