Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina Kratchmarova is active.

Publication


Featured researches published by Irina Kratchmarova.


Molecular & Cellular Proteomics | 2002

Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics

Shao En Ong; Blagoy Blagoev; Irina Kratchmarova; Dan B. Kristensen; Hanno Steen; Akhilesh Pandey; Matthias Mann

Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.


Nature | 2006

Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6

Hans Häcker; Vanessa Redecke; Blagoy Blagoev; Irina Kratchmarova; Li-Chung Hsu; Gang G. Wang; Mark P. Kamps; Eyal Raz; Hermann Wagner; Georg Häcker; Matthias Mann; Michael Karin

Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.


Nature Biotechnology | 2003

A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling.

Blagoy Blagoev; Irina Kratchmarova; Shao En Ong; Mogens Brøndsted Nielsen; Leonard J. Foster; Matthias Mann

Mass spectrometry–based proteomics can reveal protein-protein interactions on a large scale, but it has been difficult to separate background binding from functionally important interactions and still preserve weak binders. To investigate the epidermal growth factor receptor (EGFR) pathway, we employ stable isotopic amino acids in cell culture (SILAC) to differentially label proteins in EGF-stimulated versus unstimulated cells. Combined cell lysates were affinity-purified over the SH2 domain of the adapter protein Grb2 (GST-SH2 fusion protein) that specifically binds phosphorylated EGFR and Src homologous and collagen (Shc) protein. We identified 228 proteins, of which 28 were selectively enriched upon stimulation. EGFR and Shc, which interact directly with the bait, had large differential ratios. Many signaling molecules specifically formed complexes with the activated EGFR-Shc, as did plectin, epiplakin, cytokeratin networks, histone H3, the glycosylphosphatidylinositol (GPI)-anchored molecule CD59, and two novel proteins. SILAC combined with modification-based affinity purification is a useful approach to detect specific and functional protein-protein interactions.


Nature Biotechnology | 2004

Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics

Blagoy Blagoev; Shao En Ong; Irina Kratchmarova; Matthias Mann

To study the global dynamics of phosphotyrosine-based signaling events in early growth factor stimulation, we developed a mass spectrometric method that converts temporal changes to differences in peptide isotopic abundance. The proteomes of three cell populations were metabolically encoded with different stable isotopic forms of arginine. Each population was stimulated by epidermal growth factor for a different length of time, and tyrosine-phosphorylated proteins and closely associated binders were affinity purified. Arginine-containing peptides occurred in three forms, which were quantified; we then combined two experiments to generate five-point dynamic profiles. We identified 81 signaling proteins, including virtually all known epidermal growth factor receptor substrates, 31 novel effectors and the time course of their activation upon epidermal growth factor stimulation. Global activation profiles provide an informative perspective on cell signaling and will be crucial to modeling signaling networks in a systems biology approach.


Science Signaling | 2011

System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation

Kristoffer T.G. Rigbolt; Tatyana Prokhorova; Vyacheslav Akimov; Jeanette Henningsen; Pia Thermann Johansen; Irina Kratchmarova; Moustapha Kassem; Matthias Mann; J. Olsen; Blagoy Blagoev

Dynamic phosphorylation during stem cell differentiation may control recruitment of DNA methyltransferases to silence genes that maintain pluripotency. Dynamics of the Stem Cell Phosphoproteome Understanding the signaling events that control stem cell pluripotency and self-renewal and those governing differentiation should improve our ability to develop stem cell–based therapies. Rigbolt et al. performed global quantitative proteomic and phosphoproteomic analysis of human embryonic stem cells at five time points over 24 hours of nondirected (lineage-independent) differentiation initiated by two different paradigms. They identified a common core phosphoproteome associated with both differentiation protocols, discovered several temporal patterns of phosphorylation, and made predictions about changes in the activities of kinases during the differentiation period. DNA methyltransferases (DNMTs) exhibited dynamic changes in phosphorylation status that may influence their interaction with a promoter-bound protein complex, suggesting that the phosphorylation state of DNMTs may govern their recruitment to and thus silencing of target genes, such as those that promote pluripotency, during differentiation. To elucidate cellular events underlying the pluripotency of human embryonic stem cells (hESCs), we performed parallel quantitative proteomic and phosphoproteomic analyses of hESCs during differentiation initiated by a diacylglycerol analog or transfer to media that had not been conditioned by feeder cells. We profiled 6521 proteins and 23,522 phosphorylation sites, of which almost 50% displayed dynamic changes in phosphorylation status during 24 hours of differentiation. These data are a resource for studies of the events associated with the maintenance of hESC pluripotency and those accompanying their differentiation. From these data, we identified a core hESC phosphoproteome of sites with similar robust changes in response to the two distinct treatments. These sites exhibited distinct dynamic phosphorylation patterns, which were linked to known or predicted kinases on the basis of the matching sequence motif. In addition to identifying previously unknown phosphorylation sites on factors associated with differentiation, such as kinases and transcription factors, we observed dynamic phosphorylation of DNA methyltransferases (DNMTs). We found a specific interaction of DNMTs during early differentiation with the PAF1 (polymerase-associated factor 1) transcriptional elongation complex, which binds to promoters of the pluripotency and known DNMT target genes encoding OCT4 and NANOG, thereby providing a possible molecular link for the silencing of these genes during differentiation.


Molecular & Cellular Proteomics | 2002

A Proteomic Approach for Identification of Secreted Proteins during the Differentiation of 3T3-L1 Preadipocytes to Adipocytes

Irina Kratchmarova; Dario E. Kalume; Blagoy Blagoev; Philipp E. Scherer; Alexandre V. Podtelejnikov; Henrik Molina; Perry E. Bickel; Jens S. Andersen; Minerva Fernandez; Jacob Bunkenborg; Peter Roepstorff; Karsten Kristiansen; Harvey F. Lodish; Matthias Mann; Akhilesh Pandey

We have undertaken a systematic proteomic approach to purify and identify secreted factors that are differentially expressed in preadipocytes versus adipocytes. Using one-dimensional gel electrophoresis combined with nanoelectrospray tandem mass spectrometry, proteins that were specifically secreted by 3T3-L1 preadipocytes or adipocytes were identified. In addition to a number of previously reported molecules that are up- or down-regulated during this differentiation process (adipsin, adipocyte complement-related protein 30 kDa, complement C3, and fibronectin), we identified four secreted molecules that have not been shown previously to be expressed differentially during the process of adipogenesis. Pigment epithelium-derived factor, a soluble molecule with potent antiangiogenic properties, was found to be highly secreted by preadipocytes but not adipocytes. Conversely, we found hippocampal cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several additional secreted proteins including resistin, secreted acidic cysteine-rich glycoprotein/osteonectin, stromal cell-derived factor-1, cystatin C, gelsolin, and matrix metalloprotease-2 were identified by this method. To our knowledge, this is the first study to identify several novel secreted proteins by adipocytes by a proteomic approach using mass spectrometry.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dissection of the insulin signaling pathway via quantitative phosphoproteomics

Marcus Krüger; Irina Kratchmarova; Blagoy Blagoev; Yu-Hua Tseng; C R Kahn; Matthias Mann

The insulin signaling pathway is of pivotal importance in metabolic diseases, such as diabetes, and in cellular processes, such as aging. Insulin activates a tyrosine phosphorylation cascade that branches to create a complex network affecting multiple biological processes. To understand the full spectrum of the tyrosine phosphorylation cascade, we have defined the tyrosine-phosphoproteome of the insulin signaling pathway, using high resolution mass spectrometry in combination with phosphotyrosine immunoprecipitation and stable isotope labeling by amino acids in cell culture (SILAC) in differentiated brown adipocytes. Of 40 identified insulin-induced effectors, 7 have not previously been described in insulin signaling, including SDR, PKCδ binding protein, LRP-6, and PISP/PDZK11, a potential calcium ATPase binding protein. A proteomic interaction screen with PISP/PDZK11 identified the calcium transporting ATPase SERCA2, supporting a connection to calcium signaling. The combination of quantitative phosphoproteomics with cell culture models provides a powerful strategy to dissect the insulin signaling pathways in intact cells.


Molecular & Cellular Proteomics | 2010

Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation

Jeanette Henningsen; Kristoffer T.G. Rigbolt; Blagoy Blagoev; Bente Klarlund Pedersen; Irina Kratchmarova

During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics of protein secretion. We identified and quantitatively analyzed 635 secreted proteins, including 35 growth factors, 40 cytokines, and 36 metallopeptidases. The extensive presence of these proteins that can act as potent signaling mediators to other cells and tissues strongly highlights the important role of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188 of these secreted proteins to be significantly regulated during the process of myogenesis. Comparative analyses of selected secreted proteins revealed little correlation between their mRNA and protein levels, indicating pronounced regulation by posttranscriptional mechanisms. Furthermore, analyses of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique hydroxyproline sites mapping to 48 distinct secreted proteins and have discovered a novel hydroxyproline motif.


Science Signaling | 2009

Regulation of epidermal growth factor receptor trafficking by lysine deacetylase hdac6

Yonathan Lissanu Deribe; Philipp Wild; Akhila Chandrashaker; Jasna Curak; Mirko H. H. Schmidt; Yannis Kalaidzidis; Natasa Milutinovic; Irina Kratchmarova; Lukas Buerkle; Michael J. Fetchko; Philipp Schmidt; Saranya Kittanakom; Kevin R. Brown; Igor Jurisica; Blagoy Blagoev; Marino Zerial; Igor Stagljar; Ivan Dikic

HDAC6 sets a brake that slows down the delivery of activated epidermal growth factor receptors to the degradative compartment. Setting a Speed Limit on EGFR Traffic Receptor tyrosine kinases interact with ligands at the cell surface to trigger intracellular signaling cascades. In some cases, these receptors are internalized, a process that can either enable them to initiate signaling cascades from intracellular membranes or target them for lysosomal degradation. Lissanu Deribe et al. connect acetylation of the microtubule cytoskeleton to regulation of delivery of epidermal growth factor receptors (EGFRs) to lysosomes. HDAC6, a cytoplasmic lysine deacetylase, was identified as binding to the inactive EGFR, stimulating deacetylation of α-tubulin, and decreasing the rate of delivery of EGFR from the early endosome to late endosomes or lysosomes. Phosphorylation of HDAC6, which decreased its activity, by activated EGFR created a negative feedback loop, leading to increased degradation of activated EGFRs. Binding of epidermal growth factor (EGF) to its receptor leads to receptor dimerization, assembly of protein complexes, and activation of signaling networks that control key cellular responses. Despite their fundamental role in cell biology, little is known about protein complexes associated with the EGF receptor (EGFR) before growth factor stimulation. We used a modified membrane yeast two-hybrid system together with bioinformatics to identify 87 candidate proteins interacting with the ligand-unoccupied EGFR. Among them was histone deacetylase 6 (HDAC6), a cytoplasmic lysine deacetylase, which we found negatively regulated EGFR endocytosis and degradation by controlling the acetylation status of α-tubulin and, subsequently, receptor trafficking along microtubules. A negative feedback loop consisting of EGFR-mediated phosphorylation of HDAC6 Tyr570 resulted in reduced deacetylase activity and increased acetylation of α-tubulin. This study illustrates the complexity of the EGFR-associated interactome and identifies protein acetylation as a previously unknown regulator of receptor endocytosis and degradation.


Molecular & Cellular Proteomics | 2009

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and Quantitative Comparison of the Membrane Proteomes of Self-renewing and Differentiating Human Embryonic Stem Cells

Tatyana Prokhorova; Kristoffer T.G. Rigbolt; Pia Thermann Johansen; Jeanette Henningsen; Irina Kratchmarova; Moustapha Kassem; Blagoy Blagoev

Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research mainly because of the complex nature of hESC culture conditions. Here we describe complete SILAC labeling of hESCs with fully preserved pluripotency, self-renewal capabilities, and overall proteome status that was quantitatively analyzed to a depth of 1556 proteins and 527 phosphorylation events. SILAC-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase ζ (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell populations.

Collaboration


Dive into the Irina Kratchmarova's collaboration.

Top Co-Authors

Avatar

Blagoy Blagoev

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nerea Osinalde

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Jeanette Henningsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akhilesh Pandey

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kristoffer T.G. Rigbolt

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Moustapha Kassem

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Vyacheslav Akimov

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Shao En Ong

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge