Irina Opentanova
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irina Opentanova.
The Lancet | 1996
Jose F. Caro; Jerzy W. Kolaczynski; Mark R. Nyce; Joanna P. Ohannesian; Irina Opentanova; Warren H Goldman; Richard B. Lynn; Peili Zhang; Madhur Sinha; Robert V. Considine
BACKGROUND A receptor for leptin has been cloned from the choroid plexus, the site of cerebrospinal-fluid (CSF) production and the location of the blood/cerebrospinal-fluid barrier. Thus, this receptor might serve as a transporter for leptin. We have studied leptin concentrations in serum and (CSF). METHODS AND FINDINGS We demonstrated by radioimmunoassay and western blot the presence of leptin in human CSF. We then measured leptin in CSF and serum in 31 individuals with a wide range of bodyweight. Mean serum leptin was 318% higher in 8 obese (40.2 [SE 8.6] ng/mL) than in 23 lean individuals (9.6 [1.5] ng/mL, p < 0.0005). However, the CSF leptin concentration in obese individuals (0.337 [0.04] ng/mL) was only 30% higher than in lean people (0.259 [0.26] ng/mL, p < 0.1). Consequently, the leptin CSF/serum ratio in lean individuals (0.047 [0.010]) was 4.3-fold higher than that in obese individuals (0.011 [0.002], p < 0.05). The relation between CSF leptin and serum leptin was best described by a logarithmic function (r = 0 x 52, p < 0.01). INTERPRETATION Our data suggest that leptin enters the brain by a saturable transport system. The capacity of leptin transport is lower in obese individuals, and may provide a mechanism for leptin resistance.
Journal of Clinical Investigation | 1996
Madhur K. Sinha; Irina Opentanova; Joanna P. Ohannesian; Jerzy W. Kolaczynski; Mark L. Heiman; John E. Hale; Gerald W. Becker; Ronald R. Bowsher; Thomas W. Stephens; Jose F. Caro
Little is known about leptins interaction with other circulating proteins which could be important for its biological effects. Sephadex G-100 gel filtration elution profiles of 125I-leptin-serum complex demonstrated 125I-leptin eluting in significant proportion associated with macromolecules. The 125I-leptin binding to circulating macromolecules was specific, reversible, and displaceable with unlabeled leptin (ED50: 0.73 +/- 0.09 nM, mean +/- SEM, n = 3). Several putative leptin binding proteins were detected by leptin-affinity chromatography of which either 80- or 100-kD proteins could be the soluble leptin receptor as approximately 10% of the bound 125I-leptin was immunoprecipitable with leptin receptor antibodies. Significantly higher (P < 0.001) proportions of total leptin circulate in the bound form in lean (46.5 +/- 6.6%) compared with obese (21.4 +/- 3.4%) subjects. In lean subjects with 21% or less body fat, 60-98% of the total leptin was in the bound form. Short-term fasting significantly decreased basal leptin levels in three lean (P < 0.0005) and three obese (P < 0.005) subjects while refeeding restored it to basal levels. The effects of fasting on free leptin levels were more pronounced in lean subjects (basal vs. 24-h fasting: 19.6 +/- 1.9 vs. 1.3 +/- 0.4 ng/ml) compared with those in obese subjects (28.3 +/- 9.8 vs. 14.7 +/- 5.3). No significant (P > 0.05) decrease was observed in bound leptin in either group. These studies suggest that in obese individuals the majority of leptin circulates in free form, presumably bioactive protein, and thus obese subjects are resistant to free leptin. In lean subjects with relatively low adipose tissue, the majority of circulating leptin is in the bound form and thus may not be available to brain receptors for its inhibitory effects on food intake both under normal and food deprivation states.
Diabetes | 1996
Jerzy W. Kolaczynski; Robert V. Considine; Joanna P. Ohannesian; Cheryl C. Marco; Irina Opentanova; Mark R. Nyce; Michael Myint; Jasé F Caro
We investigated the response of leptin to short-term fasting and refeeding in humans. A mild decline in subcutaneous adipocyte ob gene mRNA and a marked fall in serum leptin were observed after 36 and 60 h of fasting. The dynamics of the leptin decline and rise were further substantiated in a 6-day study consisting of a 36-h baseline period, followed by 36-h fast, and a subsequent refeeding with normal diet. Leptin began a steady decline from the baseline values after 12 h of fasting, reaching a nadir at 36 h. The subsequent restoration of normal food intake was associated with a prompt leptin rise and a return to baseline values 24 h later. When responses of leptin to fasting and refeeding were compared with that of glucose, insulin, fatty acids, and ketones, a reverse relationship between leptin and β-OH-butyrate was found. Consequently, we tested whether the reciprocal responses represented a causal relationship between leptin and β-OH-butyrate. Small amounts of infused glucose equal to the estimated contribution of gluconeogenesis, which was sufficient to prevent rise in ketogenesis, also prevented a fall in leptin. The infusion of β-OH-butyrate to produce hyperketonemia of the same magnitude as after a 36-h fast had no effect on leptin. The study indicates that one of the adaptive physiological responses to fasting is a fall in serum leptin. Although the mediator that brings about this effect remains unknown, it appears to be neither insulin nor ketones.
Anesthesiology | 1999
Valerie E. Armstead; Irina Opentanova; Alexander G. Minchenko; Allan M. Lefer
BACKGROUND Tissue factor (TF) is a cell-surface glycoprotein responsible for initiating the extrinsic pathway of coagulation that has been shown to have a role in the pathophysiology of sepsis and reperfusion injury. The purpose of this study was to investigate TF expression in vital organs and to determine possible regulatory mechanisms of TF expression in the lung during traumatic shock in rats. METHODS Noble-Collip drum trauma was induced in anesthetized Sprague-Dawley rats. Anesthetized rats without trauma served as controls. TF activity was measured in plasma and lung tissue. TF messenger RNA (mRNA) was measured in the lung, liver, and small intestine using ribonuclease protection assays. Electromobility shift assays were used to quantify binding of nuclear extracts from lung to TF-specific consensus domains for transcription factors NF-kappaB and AP-1. RESULTS TF activity in plasma increased up to 14-fold and +232% in the lung (P < 0.001 for plasma and lung) 2 h after trauma. TF mRNA level was significantly increased in the lungs (P < 0.01), small intestine (P < 0.01), and liver (P < 0.05) 1 h after trauma compared to sham-operated control rats. TF mRNA expression continued to increase in the lungs and the liver (both, P < 0.001) 2 h after trauma TF sequence-specific complex binding to AP-1 and NF-kappaB domains was enhanced in the lungs of trauma rats (+395%, P < 0.001 and +168%, P < 0.001, respectively). CONCLUSIONS These results suggest that TF may play an important role in the pathophysiology of severe trauma and that regulatory elements AP-1 and NF-kappaB may be involved in the regulation of TF mRNA expression in traumatic shock.
Endothelium-journal of Endothelial Cell Research | 1999
Alexander G. Minchenko; Valerie E. Armstead; Irina Opentanova; Allan M. Lefer
Endothelin-1 (ET-1) is a vasoconstrictor peptide that may play an important role in the pathophysiology of severe trauma. We examined ET-1 gene expression in vital organs (i.e., heart, lungs, kidneys, liver and small intestine) during murine traumatic shock using ribonuclease protection assays. Our data show that ET-1 mRNA was significantly increased in the lungs two hours after trauma when compared with control anesthetized rats. There was also a significant increase in ET-1 transcripts occurring in the kidneys, heart and liver. During these experimental conditions, we also observed statistically significant increased endothelin type B (ET(B)) receptor mRNA expression in the lung, heart, liver, kidney and small intestine. Expression of endothelial constitutive nitric oxide synthase (ecNOS) gene, which is functionally coupled to ET(B) receptor, also was increased in vital organs during traumatic shock. Endothelin type A (ET(A)) receptor gene expression was slightly decreased in the lung, liver and small intestine. These results suggest that ET-1 and ET(B) mRNA expression are mainly increased in the lung and other vital organs and may play a functional role in the pathophysiology of murine traumatic shock.
Pediatric Research | 1997
Sandra G. Hassink; Michael L. Spear; Elizabeth de Lancey; David V. Sheslow; Susan M. Smith-Kirwin; Darlise O'Connor; Robert V. Considine; Irina Opentanova; Kerstin Dostal; Kathy Leef; Melissa Ash; Alan R. Spitzer; Vicky L. Funanage
BACKGROUND Leptin, the protein product of the ob gene, is produced by the adipocyte and seems to function as a link between adiposity, satiety, and activity. Leptin has also been found to be necessary for pubertal development, conception, and pregnancy in mice, and is increased in prepubertal children, independent of adiposity, suggesting a role in childhood growth and development. This study investigated 100 mother/newborn pairs to determine the role of leptin in neonatal development. Placental tissue was assayed for leptin mRNA to evaluate it as a source of leptin production in utero. METHODS One hundred mother/newborn pairs were enrolled in this study. Radioimmunoassay was performed for leptin on maternal venous and newborn cord blood. Leptin concentrations were measured in 43 children in Tanner stages 1 and 2 as a control group. Placental tissue was obtained from five mothers and assayed for leptin mRNA by reverse transcription/polymerase chain reaction (RT/PCR). Human placental cell lines JAR and JEG-3 were also assayed for leptin mRNA expression. RESULTS Leptin was present in all newborns studied at a mean concentration of 8.8 ng/mL (+/-9.6 standard deviations). Leptin concentrations in cord blood correlated with newborn weight (r = .51), body mass index (BMI) (r = .48), and arm fat (r = .42). There was no correlation between leptin and insulin. When statistically covarying for adiposity for newborns and Tanner stages 1 and 2 children, newborns had greater concentrations of leptin (mean, 10.57 ng/mL) than children (mean, 3.04 ng/mL). Leptin was present in all mothers at a mean value of 28.8 ng/mL (+/-22.2 standard deviations). Leptin concentration correlated with prepregnancy BMI (r = .56), BMI at time of delivery (r = .74), and arm fat (r = .73). Maternal leptin correlated with serum insulin (r = .49). There was no correlation between maternal and newborn leptin concentrations. Thirteen percent of newborns had higher leptin concentrations than their mothers. Placental tissue from five separate placentas expressed leptin mRNA at comparable or greater levels than adipose tissue. Two human trophoblastic placental cell lines, JAR and JEG-3, also expressed leptin mRNA. CONCLUSIONS The correlation between leptin and adiposity found in children and adults was also found in newborns. Serum leptin concentrations in newborns were increased more than three-fold compared with children in Tanner stages 1 and 2 when controlling for adiposity, suggesting that leptin concentrations in the newborn are not explained by adiposity alone. Maternal leptin concentrations correlated with measures of adiposity at delivery but did not correlate with newborn adiposity or leptin. Leptin mRNA was expressed both in placental tissue and in two human placental cell lines. These data suggest that leptin has a role in intrauterine and neonatal development and that the placenta provides a source of leptin for the growing fetus.
Pediatrics | 1996
Sandra G. Hassink; David V. Sheslow; Elizabeth de Lancey; Irina Opentanova; Robert V. Considine; Jose F. Caro
Pediatrics | 1997
Sandra G. Hassink; Elizabeth de Lancey; David V. Sheslow; Susan M. Smith-Kirwin; Darlise O'Connor; Robert V. Considine; Irina Opentanova; Kerstin Dostal; Michael L. Spear; Kathy Leef; Melissa Ash; Alan R. Spitzer; Vicky L. Funanage
Journal of Biological Chemistry | 2002
Alexander G. Minchenko; Irene Leshchinsky; Irina Opentanova; Nianli Sang; Vickram Srinivas; Valerie E. Armstead; Jaime Caro
Biochemical and Biophysical Research Communications | 1996
Robert V. Considine; Eileen L. Considine; Charlene J. Williams; Mark R. Nyce; Peili Zhang; Irina Opentanova; Joanna P. Ohannesian; Jerzy W. Kolaczynski; Thomas Bauer; John H. Moore; Jose F. Caro