Irina Sinakevitch
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Irina Sinakevitch.
Neuron | 2007
Jens Rister; Dennis Pauls; Bettina Schnell; Chun Yuan Ting; Chi Hon Lee; Irina Sinakevitch; Javier Morante; Nicholas J. Strausfeld; Kei Ito; Martin Heisenberg
In the eye, visual information is segregated into modalities such as color and motion, these being transferred to the central brain through separate channels. Here, we genetically dissect the achromatic motion channel in the fly Drosophila melanogaster at the level of the first relay station in the brain, the lamina, where it is split into four parallel pathways (L1-L3, amc/T1). The functional relevance of this divergence is little understood. We now show that the two most prominent pathways, L1 and L2, together are necessary and largely sufficient for motion-dependent behavior. At high pattern contrast, the two pathways are redundant. At intermediate contrast, they mediate motion stimuli of opposite polarity, L2 front-to-back, L1 back-to-front motion. At low contrast, L1 and L2 depend upon each other for motion processing. Of the two minor pathways, amc/T1 specifically enhances the L1 pathway at intermediate contrast. L3 appears not to contribute to motion but to orientation behavior.
The Journal of Comparative Neurology | 2009
Nicholas J. Strausfeld; Irina Sinakevitch; Sheena Brown; Sarah M. Farris
In most insects with olfactory glomeruli, each side of the brain possesses a mushroom body equipped with calyces supplied by olfactory projection neurons. Kenyon cells providing dendrites to the calyces supply a pedunculus and lobes divided into subdivisions supplying outputs to other brain areas. It is with reference to these components that most functional studies are interpreted. However, mushroom body structures are diverse, adapted to different ecologies, and likely to serve various functions. In insects whose derived life styles preclude the detection of airborne odorants, there is a loss of the antennal lobes and attenuation or loss of the calyces. Such taxa retain mushroom body lobes that are as elaborate as those of mushroom bodies equipped with calyces. Antennal lobe loss and calycal regression also typify taxa with short nonfeeding adults, in which olfaction is redundant. Examples are cicadas and mayflies, the latter representing the most basal lineage of winged insects. Mushroom bodies of another basal taxon, the Odonata, possess a remnant calyx that may reflect the visual ecology of this group. That mushroom bodies persist in brains of secondarily anosmic insects suggests that they play roles in higher functions other than olfaction. Mushroom bodies are not ubiquitous: the most basal living insects, the wingless Archaeognatha, possess glomerular antennal lobes but lack mushroom bodies, suggesting that the ability to process airborne odorants preceded the acquisition of mushroom bodies. Archaeognathan brains are like those of higher malacostracans, which lack mushroom bodies but have elaborate olfactory centers laterally in the brain. J. Comp. Neurol. 513:265–291, 2009.
The Journal of Comparative Neurology | 2006
Irina Sinakevitch; Nicholas J. Strausfeld
A serum raised against conjugated octopamine reveals structurally comparable systems of perikarya and arborizations in protocerebral neuropils of two species of Diptera, Drosophila melanogaster and Phaenicia sericata; the latter is used extensively for electrophysiological studies of the optic lobes and their central projections. Clusters of cell bodies in the brain as well as midline perikarya provide octopamine‐like immunoreactive processes to the optic lobes, circumscribed regions of the protocerebrum and the central complex, particularly the protocerebral bridge, fan‐shaped body, and ellipsoid body. Ventral unpaired median somata provide immunoreactive processes within the subesophageal ganglion and tritocerebrum. Ascending neurites from these cells also supply the antennal lobe glomeruli, regions of the lateral protocerebrum, the mushroom body calyces, and the lobula complex. The mushroom bodys γ lobes contain immunoreactive processes that originate from processes that arborize in the protocerebrum. The present observations are discussed with respect to similarities and differences between two species of Diptera, one of which has neurons large enough for intracellular penetrations. The results are also discussed with respect to recent studies on octopamine‐immunoreactive organization in honey bees and cockroaches and the suggested roles of octopamine in sensory processing, learning, and memory. J. Comp. Neurol. 494:460–475, 2006.
The Journal of Comparative Neurology | 2003
Irina Sinakevitch; John K. Douglass; Gerhard Scholtz; Rudi Loesel; Nicholas J. Strausfeld
The shared organization of three optic lobe neuropils—the lamina, medulla, and lobula—linked by chiasmata has been used to support arguments that insects and malacostracans are sister groups. However, in certain insects, the lobula is accompanied by a tectum‐like fourth neuropil, the lobula plate, characterized by wide‐field tangential neurons and linked to the medulla by uncrossed axons. The identification of a lobula plate in an isopod crustacean raises the question of whether the lobula plate of insects and isopods evolved convergently or are derived from a common ancestor. This question is here investigated by comparisons of insect and crustacean optic lobes. The basal branchiopod crustacean Triops has only two visual neuropils and no optic chiasma. This finding contrasts with the phyllocarid Nebalia pugettensis, a basal malacostracan whose lamina is linked by a chiasma to a medulla that is linked by a second chiasma to a retinotopic outswelling of the lateral protocerebrum, called the protolobula. In Nebalia, uncrossed axons from the medulla supply a minute fourth optic neuropil. Eumalacostracan crustaceans also possess two deep neuropils, one receiving crossed axons, the other uncrossed axons. However, in primitive insects, there is no separate fourth optic neuropil. Malacostracans and insects also differ in that the insect medulla comprises two nested neuropils separated by a layer of axons, called the Cuccati bundle. Comparisons suggest that neuroarchitectures of the lamina and medulla distal to the Cuccati bundle are equivalent to the eumalacostracan lamina and entire medulla. The occurrence of a second optic chiasma and protolobula are suggested to be synapomorphic for a malacostracan/insect clade. J. Comp. Neurol. 467:150–172, 2003.
Arthropod Structure & Development | 2003
Sarah M. Farris; Irina Sinakevitch
The insect mushroom bodies are prominent higher order neuropils consisting of thousands of approximately parallel projecting intrinsic neurons arising from the minute basophilic perikarya of globuli cells. Early studies described these structures as centers for intelligence and other higher functions; at present, the mushroom bodies are regarded as important models for the neural basis of learning and memory. The insect mushroom bodies share a similar general morphology, and the same basic sequence of developmental events is observed across a wide range of insect taxa. Globuli cell progenitors arise in the embryo and proliferate throughout the greater part of juvenile development. Discrete morphological and functional subpopulations of globuli cells (or Kenyon cells, as they are called in insects) are sequentially produced at distinct periods of development. Kenyon cell somata are arranged by age around the center of proliferation, as are their processes in the mushroom body neuropil. Other aspects of mushroom body development are more variable from species to species, such as the origin of specific Kenyon cell populations and neuropil substructures, as well as the timing and pace of the general developmental sequence.
The Journal of Comparative Neurology | 2001
Irina Sinakevitch; Sarah M. Farris; Nicholas J. Strausfeld
The lobes of the mushroom bodies of the cockroach Periplaneta americana consist of longitudinal modules called laminae. These comprise repeating arrangements of Kenyon cell axons, which like their dendrites and perikarya have an affinity to one of three antisera: to taurine, aspartate, or glutamate. Taurine‐immunopositive laminae alternate with immunonegative ones. Aspartate‐immunopositive Kenyon cell axons are distributed across the lobes. However, smaller leaf‐like ensembles of axons that reveal particularly high affinities to anti‐aspartate are embedded within taurine‐positive laminae and occur in the immunonegative laminae between them. Together, these arrangements reveal a complex architecture of repeating subunits whose different levels of immunoreactivity correspond to broader immunoreactive layers identified by sera against the neuromodulator FMRFamide. Throughout development and in the adult, the most posterior lamina is glutamate immunopositive. Its axons arise from the most recently born Kenyon cells that in the adult retain their juvenile character, sending a dense system of collaterals to the front of the lobes. Glutamate‐positive processes intersect aspartate‐ and taurine‐immunopositive laminae and are disposed such that they might play important roles in synaptogenesis or synapse modification. Glutamate immunoreactivity is not seen in older, mature axons, indicating that Kenyon cells show plasticity of neurotransmitter phenotype during development. Aspartate may be a universal transmitter substance throughout the lobes. High levels of taurine immunoreactivity occur in broad laminae containing the high concentrations of synaptic vesicles. J. Comp. Neurol. 439:352–367, 2001.
The Journal of Comparative Neurology | 2004
Irina Sinakevitch; Nicholas J. Strausfeld
In Diptera, subsets of small retinotopic neurons provide a discrete channel from achromatic photoreceptors to large motion‐sensitive neurons in the lobula complex. This pathway is distinguished by specific affinities of its neurons to antisera raised against glutamate, aspartate, γ‐aminobutyric acid (GABA), choline acetyltransferase (ChAT), and a N‐methyl‐D‐aspartate type 1 receptor protein (NMDAR1). Large type 2 monopolar cells (L2) and type 1 amacrine cells, which in the external plexiform layer are postsynaptic to the achromatic photoreceptors R1–R6, express glutamate immunoreactivity as do directionally selective motion‐sensitive tangential neurons of the lobula plate. L2 monopolar cells ending in the medulla are accompanied by terminals of a second efferent neuron T1, the dendrites of which match NMDAR1‐immunoreactive profiles in the lamina. L2 and T1 endings visit ChAT and GABA‐immunoreactive relays (transmedullary neurons) that terminate from the medulla in a special layer of the lobula containing the dendrites of directionally selective retinotopic T5 cells. T5 cells supply directionally selective wide‐field neurons in the lobula plate. The present results suggest a circuit in which initial motion detection relies on interactions among amacrines and T1, and the subsequent convergence of T1 and L2 at transmedullary cell dendrites. Convergence of ChAT‐immunoreactive and GABA‐immunoreactive transmedullary neurons at T5 dendrites in the lobula, and the presence there of local GABA‐immunoreactive interneurons, are suggested to provide excitatory and inhibitory elements for the computation of motion direction. A comparable immunocytological organization of aspartate‐ and glutamate‐immunoreactive neurons in honeybees and cockroaches further suggests that neural arrangements providing directional motion vision in flies may have early evolutionary origins. J. Comp. Neurol. 468:6–23, 2004.
PLOS ONE | 2011
Irina Sinakevitch; Julie A. Mustard; Brian H. Smith
Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.
Neural Development | 2010
Irina Sinakevitch; Yves Grau; Nicholas J. Strausfeld; Serge Birman
BackgroundThe mushroom bodies (MBs) are paired brain centers located in the insect protocerebrum involved in olfactory learning and memory and other associative functions. Processes from the Kenyon cells (KCs), their intrinsic neurons, form the bulk of the MBs calyx, pedunculus and lobes. In young adult Drosophila, the last-born KCs extend their processes in the α/β lobes as a thin core (α/β cores) that is embedded in the surrounding matrix of other mature KC processes. A high level of L-glutamate (Glu) immunoreactivity is present in the α/β cores (α/βc) of recently eclosed adult flies. In a Drosophila model of fragile X syndrome, the main cause of inherited mental retardation, treatment with metabotropic Glu receptor (mGluR) antagonists can rescue memory deficits and MB structural defects.ResultsTo address the role of Glu signaling in the development and maturation of the MB, we have compared the time course of Glu immunoreactivity with the expression of various glutamatergic markers at various times, that is, 1 hour, 1 day and 10 days after adult eclosion. We observed that last-born α/βc KCs in young adult as well as developing KCs in late larva and at various pupal stages transiently express high level of Glu immunoreactivity in Drosophila. One day after eclosion, the Glu level was already markedly reduced in the α/βc neurons. Glial cell processes expressing glutamine synthetase and the Glu transporter dEAAT1 were found to surround the Glu-expressing KCs in very young adults, subsequently enwrapping the α/β lobes to become distributed equally over the entire MB neuropil. The vesicular Glu transporter DVGluT was detected by immunostaining in processes that project within the MB lobes and pedunculus, but this transporter is apparently never expressed by the KCs themselves. The NMDA receptor subunit dNR1 is widely expressed in the MB neuropil just after eclosion, but was not detected in the α/βc neurons. In contrast, we provide evidence that DmGluRA, the only Drosophila mGluR, is specifically expressed in Glu-accumulating cells of the MB α/βc immediately and for a short time after eclosion.ConclusionsThe distribution and dynamics of glutamatergic markers indicate that newborn KCs transiently accumulate Glu at a high level in late pupal and young eclosed Drosophila, and may locally release this amino acid by a mechanism that would not involve DVGluT. At this stage, Glu can bind to intrinsic mGluRs abundant in the α/βc KCs, and to NMDA receptors in the rest of the MB neuropil, before being captured and metabolized in surrounding glial cells. This suggests that Glu acts as an autocrine or paracrine agent that contributes to the structural and functional maturation of the MB during the first hours of Drosophila adult life.
The Journal of Comparative Neurology | 2005
Marcus Sjöholm; Irina Sinakevitch; Rickard Ignell; Nicholas J. Strausfeld; Bill S. Hansson
The mushroom bodies are paired structures in the insect brain involved in complex functions such as memory formation, sensory integration, and context recognition. In many insects these centers are elaborate, sometimes comprising several hundred thousand neurons. The present account describes the mushroom bodies of Spodoptera littoralis, a moth extensively used for studies of olfactory processing and conditioning. The mushroom bodies of Spodoptera consist of only about 4,000 large‐diameter Kenyon cells. However, these neurons are recognizably similar to morphological classes of Kenyon cells identified in honey bees, Drosophila, and cockroaches. The spodopteran mushroom body is equipped with three major divisions of its vertical and medial lobe, one of which, the gamma lobe, is supplied by clawed class II Kenyon cells as in other described taxa. Of special interest is the presence of a discrete tract (the Y tract) of axons leading from the calyx, separate from the pedunculus, that innervates lobelets above and beneath the medial lobe, close to the latters origin from the pedunculus. This tract is comparable to tracts and resultant lobelets identified in cockroaches and termites. The article discusses possible functional roles of the spodopteran mushroom body against the background of olfactory behaviors described from this taxon and discusses the possible functional relevance of mushroom body structure, emphasizing similarities and dissimilarities with mushroom bodies of other species, in particular the fruit fly, Drosophila melanogaster. J. Comp. Neurol. 491:290–304, 2005.