Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina V. Alymova is active.

Publication


Featured researches published by Irina V. Alymova.


Antimicrobial Agents and Chemotherapy | 2004

Efficacy of novel hemagglutinin-neuraminidase inhibitors BCX 2798 and BCX 2855 against human parainfluenza viruses in vitro and in vivo.

Irina V. Alymova; Garry L. Taylor; Toru Takimoto; Tsu-Hsing Lin; Pooran Chand; Y. Sudhakara Babu; Chenghong Li; Xiaoping Xiong; Allen Portner

ABSTRACT Human parainfluenza viruses are important respiratory tract pathogens, especially of children. However, no vaccines or specific therapies for infections caused by these viruses are currently available. In the present study we characterized the efficacy of the novel parainfluenza virus inhibitors BCX 2798 and BCX 2855, which were designed based on the three-dimensional structure of the hemagglutinin-neuraminidase (HN) protein. The compounds were highly effective in inhibiting hemagglutinin (HA) and neuraminidase (NA) activities and the growth of hPIV-1, hPIV-2, and hPIV-3 in LLC-MK2 cells. The concentrations required to reduce the activity to 50% of that of a control ranged from 0.1 to 6.0 μM in HA inhibition assays and from 0.02 to 20 μM in NA inhibition assays. The concentrations required to inhibit virus replication to 50% of the level of the control ranged from 0.7 to 11.5 μM. BCX 2798 and BCX 2855 were inactive against influenza virus HA and NA and bacterial NA. In mice infected with a recombinant Sendai virus whose HN gene was replaced with that of hPIV-1 [rSV(hHN)], intranasal administration of BCX 2798 (10 mg/kg per day) and of BCX 2855 (50 mg/kg per day) 4 h before the start of infection resulted in a significant reduction in titers of virus in the lungs and protection from death. Treatment beginning 24 h after the start of infection did not prevent death. Together, our results indicate that BCX 2798 and BCX 2855 are effective inhibitors of parainfluenza virus HN and may limit parainfluenza virus infections in humans.


Journal of Virology | 2011

Immunopathogenic and Antibacterial Effects of H3N2 Influenza A Virus PB1-F2 Map to Amino Acid Residues 62, 75, 79, and 82

Irina V. Alymova; Amanda M. Green; Nicholas van de Velde; Julie L. McAuley; Kelli L. Boyd; Hazem E. Ghoneim; Jonathan A. McCullers

ABSTRACT The influenza A virus protein PB1-F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. H3N2 viruses have historically expressed full-length PB1-F2 proteins with either proinflammatory (e.g., from influenza A/Hong Kong/1/1968 virus) or noninflammatory (e.g., from influenza A/Wuhan/359/1995 virus) properties. Using synthetic peptides derived from the active C-terminal portion of the PB1-F2 protein from those two viruses, we mapped the proinflammatory domain to amino acid residues L62, R75, R79, and L82 and then determined the role of that domain in H3N2 influenza virus pathogenicity. PB1-F2-derived peptides containing that proinflammatory motif caused significant morbidity, mortality, and pulmonary inflammation in mice, manifesting as increased acute lung injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs compared to peptides lacking this motif, and better supported bacterial infection with Streptococcus pneumoniae. Infections of mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 demonstrated increased morbidity resulting from primary viral infections and enhanced development of secondary bacterial pneumonia. The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus mediated an antibacterial effect. These data suggest that loss of the inflammatory PB1-F2 phenotype that supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with seasonal H3N2 influenza viruses in recent decades compared to their first 2 decades of circulation.


Antimicrobial Agents and Chemotherapy | 2005

The Novel Parainfluenza Virus Hemagglutinin-Neuraminidase Inhibitor BCX 2798 Prevents Lethal Synergism between a Paramyxovirus and Streptococcus pneumoniae

Irina V. Alymova; Allen Portner; Toru Takimoto; Kelli L. Boyd; Y. Sudhakara Babu; Jonathan A. McCullers

ABSTRACT An association exists between respiratory viruses and bacterial infections. Prevention or treatment of the preceding viral infection is a logical goal for reducing this important cause of morbidity and mortality. The ability of the novel, selective parainfluenza virus hemagglutinin-neuraminidase inhibitor BCX 2798 to prevent the synergism between a paramyxovirus and Streptococcus pneumoniae was examined in this study. A model of secondary bacterial pneumonia after infection with a recombinant Sendai virus whose hemagglutinin-neuraminidase gene was replaced with that of human parainfluenza virus type 1 [rSV(hHN)] was established in mice. Challenge of mice with a sublethal dose of S. pneumoniae 7 days after a sublethal infection with rSV(hHN) (synergistic group) caused 100% mortality. Bacterial infection preceding viral infection had no effect on survival. The mean bacterial titers in the synergistic group were significantly higher than in mice infected with bacteria only. The virus titers were similar in mice infected with rSV(hHN) alone and in dually infected mice. Intranasal administration of BCX 2798 at 10 mg/kg per day to the synergistic group of mice starting 4 h before virus infection protected 80% of animals from death. This effect was accompanied by a significant reduction in lung viral and bacterial titers. Treatment of mice 24 h after the rSV(hHN) infection showed no protection against synergistic lethality. Together, our results indicate that parainfluenza viruses can prime for secondary bacterial infections. Prophylaxis of parainfluenza virus infections with antivirals might be an effective strategy for prevention of secondary bacterial complications in humans.


Current Drug Targets - Infectious Disorders | 2005

Neuraminidase Inhibitors as Antiviral Agents

Irina V. Alymova; G. Taylor; A. Portner

The enzyme neuraminidase (NA) is an attractive target for antiviral strategy because of its essential role in the pathogenicity of many respiratory viruses. NA removes sialic acid from the surface of infected cells and virus particles, thereby preventing viral self-aggregation and promoting efficient viral spread; NA also plays a role in the initial penetration of the mucosal lining of the respiratory tract. Random screening for inhibitors has identified only low-affinity and nonselective viral NA inhibitors. Selective, high-affinity inhibitors of influenza virus neuraminidase, zanamivir and oseltamivir, were developed using computer-aided design techniques on the basis of the three-dimensional structure of the influenza virus NA. These drugs were highly efficient in inhibiting replication of both influenza A and B viruses in vitro and in vivo and were approved for human use in 1999. Subsequently, the same structure-based design approach was used for the rational design of inhibitors of the parainfluenza virus hemagglutinin-neuraminidase (HN). One of these compounds, BCX 2798, effectively inhibited NA activity, cell binding, and growth of parainfluenza viruses in tissue culture and in the lungs of infected mice. Clinical reports indicate high efficiency of NA inhibitors for prophylaxis and treatment of influenza virus infection, good tolerance, and a low rate of emergence of drug-resistant mutants. Future experimental and clinical studies should establish the viability of NA inhibitors for the treatment of other respiratory virus infections.


Antimicrobial Agents and Chemotherapy | 2009

Effect of Hemagglutinin-Neuraminidase Inhibitors BCX 2798 and BCX 2855 on Growth and Pathogenicity of Sendai/Human Parainfluenza Type 3 Chimera Virus in Mice

Makiko Watanabe; Vasiliy P. Mishin; Scott A. Brown; Charles J. Russell; Kelli L. Boyd; Y. Sudhakara Babu; Garry L. Taylor; Xiaoping Xiong; Xiaowei Yan; Allen Portner; Irina V. Alymova

ABSTRACT Human parainfluenza virus type 3 (hPIV-3) is a major respiratory tract pathogen that affects young children, but no vaccines or antiviral drugs against it have yet been developed. We developed a mouse model to evaluate the efficacies of the novel parainfluenza virus hemagglutinin-neuraminidase (HN) inhibitors BCX 2798 and BCX 2855 against a recombinant Sendai virus (rSeV) in which the fusion (F) and HN surface glycoproteins (FHN) were replaced by those of hPIV-3 [rSeV(hPIV-3FHN)]. In the prophylaxis model, 129X1/SvJ mice were infected with a 90% or 20% lethal dose of the virus and were treated intranasally for 5 days with 10 mg/kg of body weight/day of either compound starting 4 h before infection. Prophylactic treatment of the mice with either compound did not prevent their death in a 90% lethality model of rSeV(hPIV-3FHN) infection. However, it significantly reduced the lung virus titers, the amount of weight lost, and the rate of mortality in mice infected with a 20% lethal virus dose. In the therapy model, mice were infected with a nonlethal dose of the virus (100 PFU/mouse) and were treated intranasally with 1 or 10 mg/kg/day of either compound for 5 days starting at 24 or 48 h postinfection. Treatment of the mice with either compound significantly reduced the virus titer in the lungs, subsequently causing a reduction in the number of immune cells and the levels of cytokines in the bronchoalveolar lavage fluid and histopathologic changes in the airways. Our results indicate that BCX 2798 and BCX 2855 are effective inhibitors of hPIV-3 HN in our mouse model and may be promising candidates for the prophylaxis and treatment of hPIV-3 infection in humans.


Journal of Virology | 2008

Loss of the N-Linked Glycan at Residue 173 of Human Parainfluenza Virus Type 1 Hemagglutinin-Neuraminidase Exposes a Second Receptor-Binding Site

Irina V. Alymova; Garry L. Taylor; Vasiliy P. Mishin; Makiko Watanabe; K. Gopal Murti; Kelli L. Boyd; Pooran Chand; Y. Sudhakara Babu; Allen Portner

ABSTRACT BCX 2798 (4-azido-5-isobutyrylamino-2,3-didehydro-2,3,4,5-tetradeoxy-d-glycero-d-galacto-2-nonulopyranosic acid) effectively inhibited the activities of the hemagglutinin-neuraminidase (HN) of human parainfluenza viruses (hPIV) in vitro and protected mice from lethal infection with a recombinant Sendai virus whose HN was replaced with that of hPIV-1 (rSeV[hPIV-1HN]) (I. V. Alymova, G. Taylor, T. Takimoto, T. H. Lin., P. Chand, Y. S. Babu, C. Li, X. Xiong, and A. Portner, Antimicrob. Agents Chemother. 48:1495-1502, 2004). The ability of BCX 2798 to select drug-resistant variants in vivo was examined. A variant with an Asn-to-Ser mutation at residue 173 (N173S) in HN was recovered from mice after a second passage of rSeV(hPIV-1HN) in the presence of BCX 2798 (10 mg/kg of body weight daily). The N173S mutant remained sensitive to BCX 2798 in neuraminidase inhibition assays but was more than 10,000-fold less sensitive to the compound in hemagglutination inhibition tests than rSeV(hPIV-1HN). Its susceptibility to BCX 2798 in plaque reduction assays was reduced fivefold and did not differ from that of rSeV(hPIV-1HN) in mice. The N173S mutant failed to be efficiently eluted from erythrocytes and released from cells. It demonstrated reduced growth in cell culture and superior growth in mice. The results for gel electrophoresis analysis were consistent with the loss of the N-linked glycan at residue 173 in the mutant. Sequence and structural comparisons revealed that residue 173 on hPIV-1 HN is located close to the region of the second receptor-binding site identified in Newcastle disease virus HN. Our study suggests that the N-linked glycan at residue 173 masks a second receptor-binding site on hPIV-1 HN.


Journal of Virology | 2010

N-Linked Glycan at Residue 523 of Human Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase Masks a Second Receptor-Binding Site

Vasiliy P. Mishin; Makiko Watanabe; Garry L. Taylor; John P. DeVincenzo; Michael Bose; Allen Portner; Irina V. Alymova

ABSTRACT The hemagglutinin-neuraminidase (HN) glycoprotein plays a critical role in parainfluenza virus replication. We recently found that in addition to the catalytic binding site, HN of human parainfluenza virus type 1 (hPIV-1) may have a second receptor-binding site covered by an N-linked glycan at residue 173, which is near the region of the second receptor-binding site identified in Newcastle disease virus (NDV) HN (I. A. Alymova, G. Taylor, V. P. Mishin, M. Watanabe, K. G. Murti, K. Boyd, P. Chand, Y. S. Babu, and A. Portner, J. Virol. 82:8400-8410, 2008). Sequence analysis and superposition of the NDV and hPIV-3 HN dimer structures revealed that, similar to what was seen in hPIV-1, the N-linked glycan at residue 523 on hPIV-3 HN may cover a second receptor-binding site. Removal of this N-linked glycosylation site by an Asn-to-Asp substitution at residue 523 (N523D) changed the spectrum of the mutant viruss receptor specificity, delayed its elution from both turkey and chicken red blood cells, reduced mutant sensitivity (by about half) to the selective HN inhibitor BCX 2855 in hemagglutination inhibition tests, and slowed its growth in LLC-MK2 cells. The neuraminidase activity of the mutant and its sensitivity to BCX 2855 in neuraminidase inhibition assays did not change, indicating that the mutation did not affect the viruss catalytic-binding site and that all observed effects were caused by the exposure of the purported second receptor-binding site. Our data are consistent with the idea that, similar to the case for hPIV-1, the N-linked glycan shields a second receptor-binding site on hPIV-3 HN.


Antiviral Therapy | 2009

Efficacy of the novel parainfluenza virus haemagglutinin-neuraminidase inhibitor BCX 2798 in mice - further evaluation.

Irina V. Alymova; Makiko Watanabe; Kelli L. Boyd; Pooran Chand; Y. Sudhakara Babu; Allen Portner

BACKGROUND Human parainfluenza virus type 1 (hPIV-1) causes serious respiratory tract infections, especially in children. This study investigated the efficacy of the novel haemagglutinin-neuraminidase (HN) inhibitor BCX 2798 in the prophylaxis of lethal and the treatment of non-lethal parainfluenza virus infection in mice. METHODS In the prophylaxis model, 129x1/SvJ mice were inoculated with a 90% lethal dose of a recombinant Sendai virus, in which the HN gene was replaced with that of hPIV-1 (rSeV[hPIV-1HN]). The mice were intranasally treated either once or for 5 days with 1 or 10 mg/kg/day of BCX 2798, starting 4 h before infection. In the therapeutic model, mice were infected with 100 plaque-forming units of rSeV(hPIV-1HN) per mouse and treated intranasally with 0.1, 1 or 10 mg/kg/day of BCX 2798 for 5 days, starting 24 or 48 h after infection, or for 4 days starting 72 h after infection. RESULTS Similar to multiple dosing, a single intranasal prophylaxis with 1 or 10 mg/kg of BCX 2798 protected approximately 40% or 90%, respectively, of mice from death by rSeV(hPIV-1HN) infection. BCX 2798 also significantly reduced virus lung titres (in a dose- and time-dependent manner) and reduced histopathological changes in the airways of non-lethally infected mice at multiple intranasal dosages in the therapeutic model, with the lowest effective dosage being 0.1 mg/kg/day administered 24 h after infection. CONCLUSIONS BCX 2798 was effective in the prophylaxis of lethal and in the therapy of non-lethal parainfluenza virus infection in mice, suggesting further consideration of BCX 2798 for clinical trials.


Glycobiology | 2012

Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin–neuraminidase glycoprotein

Irina V. Alymova; Allen Portner; Vasiliy P. Mishin; Jonathan A. McCullers; Pamela Freiden; Garry L. Taylor

The hemagglutinin-neuraminidase (HN) glycoprotein is utilized by human parainfluenza viruses for binding to the host cell. By the use of glycan array assays, we demonstrate that, in addition to the first catalytic-binding site, the HN of human parainfluenza virus type 1 has a second site for binding covered by N-linked glycan. Our data suggest that attachment of the first site to sialic acid (SA)-linked receptors triggers exposure of the second site. We found that both sites bind to α2-3-linked SAs with a preference for a sialyl-Lewis(x) motif. Binding to α2-3-linked SAs with a sulfated sialyl-Lewis motif as well as to α2-8-linked SAs was unique for the second binding site. Neither site recognizes α2-6-linked oligosaccharides.


Glycoconjugate Journal | 2006

Structural analysis of a designed inhibitor complexed with the hemagglutinin-neuraminidase of Newcastle disease virus

Charlotte Ryan; Viateslav Zaitsev; David J. Tindal; Jeffrey Clifford Dyason; Robin Joy Thomson; Irina V. Alymova; Allen Portner; Mark von Itzstein; Garry L. Taylor

Viruses of the Paramyxoviridae family are the leading cause of respiratory disease in children. The human parainfluenza viruses (hPIV) are members of the Paramyxovirinae subfamily, which also includes mumps virus, Newcastle disease virus (NDV), Sendai virus (SV) and simian type 5 virus (SV5). On the surface of these viruses is the glycoprotein hemagglutinin-neuraminidase (HN), which is responsible for cell attachment, promotion of fusion and release of progeny virions. This multifunctional nature of HN makes it an attractive target for the development of inhibitors as a treatment for childhood respiratory diseases. Here we report the crystal structure of NDV HN in complex with a derivative of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, Neu5Ac2en, that has a functional group designed to occupy a large conserved binding pocket around the active site. The purpose of this study was to examine the effect of a bulky hydrophobic group at the O4 position of Neu5Ac2en, given the hydrophobic nature of the binding pocket. This derivative, with a benzyl group added to the O4 position of Neu5Ac2en, has an IC50 of ∼10 μM in a neuraminidase assay against hPIV3 HN. The IC50 value of the parent compound, Neu5Ac2en, in the same assay is ∼25 μM. These results highlight the striking difference between the influenza neuraminidase and paramyxovirus HN active sites, and provide a platform for the development of improved HN inhibitors.

Collaboration


Dive into the Irina V. Alymova's collaboration.

Top Co-Authors

Avatar

Allen Portner

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelli L. Boyd

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vasiliy P. Mishin

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jonathan A. McCullers

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Makiko Watanabe

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Toru Takimoto

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Brown

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Makiko Watanabe

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge