Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irina V. Shelukhina is active.

Publication


Featured researches published by Irina V. Shelukhina.


Toxins | 2015

Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

Denis S. Kudryavtsev; Irina V. Shelukhina; Catherine A. Vulfius; Tatyana N. Makarieva; Valentin A. Stonik; Maxim N. Zhmak; Igor A. Ivanov; Igor E. Kasheverov; Yuri N. Utkin; Victor I. Tsetlin

Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.


Journal of Alzheimer's Disease | 2010

Vaccination with Peptide 173-193 of Acetylcholine Receptor α7-Subunit Prevents Memory Loss in Olfactory Bulbectomized Mice

A. V. Kamynina; O. M. Volpina; Natalya I. Medvinskaya; Irina Ju. Aleksandrova; T. D. Volkova; Dmitriy O. Koroev; Aleksandr N. Samokhin; Inna V. Nesterova; Irina V. Shelukhina; Elena V. Kryukova; Viktor I. Tsetlin; Vadim T. Ivanov; N. V. Bobkova

We studied the ability of four non-conjugated alpha7-subunit fragments of the nicotinic acetylcholine receptor to induce an immune response and to protect memory in olfactory bulbectomized mice which demonstrate abnormalities similar to Alzheimers disease (AD). Vaccination only with the alpha7-subunit fragment 173-193 was shown to rescue spatial memory, to restore the level of alpha7 acetylcholine receptors in the cortex, and to prevent an increase in the amyloid-beta (Abeta) level in brain tissue in these animals. Antibodies against the peptide 173-193 were revealed in blood serum and cerebrospinal liquid in the bulbectomized mice. Passive immunization with mouse blood sera containing antibodies to the peptide 173-193 also restored memory in bulbectomized animals. The observed positive effect of both active and passive immunization with the fragment of alpha7-subunit on memory of bulbectomized mice provides a new insight into an anti-AD drug design.


Journal of Biological Chemistry | 2015

Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic γ-Aminobutyric Acid (GABA) Receptors

Denis S. Kudryavtsev; Irina V. Shelukhina; Lina V. Son; Lucy O. Ojomoko; Elena V. Kryukova; Ekaterina N. Lyukmanova; Maxim N. Zhmak; D. A. Dolgikh; Igor A. Ivanov; Igor E. Kasheverov; Vladislav G. Starkov; Joachim Ramerstorfer; Werner Sieghart; Victor I. Tsetlin; Yuri N. Utkin

Background: Different snake venom three-finger toxins interact with various receptors, channels, and membranes. Results: Here, we demonstrate that GABAA receptors are inhibited by α-cobratoxin, other long chain α-neurotoxins, nonconventional toxin from Naja kaouthia, and α-conotoxin ImI. Conclusion: Some toxin blockers of nicotinic acetylcholine receptors also inhibit GABAA receptors. Significance: Three-finger toxins offer new scaffolds for the design of GABAA receptor effectors. Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Brain Research | 2015

Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

Danielle John; Irina V. Shelukhina; Yuchio Yanagawa; Jim Deuchars; Zaineb Henderson

Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.


Marine Drugs | 2015

6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

Igor E. Kasheverov; Irina V. Shelukhina; Denis S. Kudryavtsev; Tatyana N. Makarieva; Ekaterina N. Spirova; Alla G. Guzii; Valentin A. Stonik; Victor I. Tsetlin

6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.


Immunobiology | 2016

Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site

Valentina G. Safronova; Catherine A. Vulfius; Irina V. Shelukhina; Valentina N. Mal’tseva; A. V. Berezhnov; Eugeniya I. Fedotova; Regina G. Miftahova; Elena V. Kryukova; Andrey A. Grinevich; Victor I. Tsetlin

Participation of nicotinic acetylcholine receptors (nAChRs) in functioning of polymorphonuclear neutrophils (PMNs) isolated from inflammatory site of mice and expression of different nAChR subunits were studied. Nicotine and acetylcholine (ACh) modified respiratory burst induced by a chemotactic peptide N-formyl-MLF in neutrophils of male (but not female) mice. Antagonists of nAChRs α-cobratoxin (αCTX), α-conotoxins MII and [A10L]PnIA at concentrations of 0.01-5μM, 0.2μM and 1μM, respectively, eliminated nAChR agonist effects. ACh also affected adhesion of PMNs, this effect was also prevented by αCTX (100nM) and MII (1nM). Neutrophils of female mice after chronic nicotine consumption acquired sensitivity to nAChR agonists. Changes of free intracellular Ca(2+) concentration in neutrophils under the action of nAChR ligands were analyzed. In cells with no Ca(2+) oscillations and relatively low resting level of intracellular Ca(2+), nicotine triggered Ca(2+)-spikes, the lag of the response shortened with increasing nicotine concentration. A nicotinic antagonist caramiphen strongly decreased the effect of nicotine. RT-PCR analysis revealed mRNAs of α2, α3, α4, α5, α6, α7, α9, β2, β3, and β4 nAChR subunits. Specific binding of [(125)I]-α-bungarotoxin was demonstrated. Thus in view of the effects and binding characteristics the results obtained suggest a regulatory role of α7, α3β2 or α6* nAChR types in specific functions of PMNs.


Doklady Biochemistry and Biophysics | 2013

Expression of acetylcholine receptors in the brain of mice at the presymptomatic stage of Parkinson's disease.

Elena V. Kryukova; Irina V. Shelukhina; E. A. Kozina; M. V. Ugryumov; Victor I. Tsetlin

69 The nigrostriatal dopaminergic (DA ergic) system plays a key role in the regulation of motor behavior of animals and humans [1]. In turn, DA ergic neurons of this system are highly responsive to the effect of nico tine, which stimulates the expression of tyrosine hydroxylase (the rate limiting enzyme of DA synthe sis) and promotes DA release [2, 3]. This effect is mediated by nicotinic acetylcholine receptors (nAChRs), which belong to the superfamily of Cys loop ligand gated ion channels [4]. Disturbances in the functioning of the nigrostriatal DA ergic system and its cholinergic regulation lead to disorders in the motor function. An illustrative example of such a pathology is Parkinson’s disease. The key element of its pathogenesis is degeneration of nigrostriatal DA ergic neurons accompanied by alterations in the expression and functional activity of different nAChR subtypes [5]. A noteworthy fact is that the incidence of Parkinson’s disease among tobacco smokers is mark edly lower than among nonsmokers [6, 7]. Studies on experimental models of the acute clinical stage of this disease have shown that nicotine, acting via α4 and α7 receptors, produces a neuroprotective effect on nigrostriatal DA ergic neurons [5, 8].


Journal of Biological Chemistry | 2017

Peptide from Sea Anemone Metridium senile Affects Transient Receptor Potential Ankyrin-repeat 1 (TRPA1) Function and Produces Analgesic Effect.

Yulia A. Logashina; Irina V. Mosharova; Yulia V. Korolkova; Irina V. Shelukhina; Igor A. Dyachenko; Victor A. Palikov; Yulia A. Palikova; Arkadii N. Murashev; Sergey A. Kozlov; Klara Stensvåg; Yaroslav A. Andreev

The transient receptor potential ankyrin-repeat 1 (TRPA1) is an important player in pain and inflammatory pathways. It is a promising target for novel drug development for the treatment of a number of pathological states. A novel peptide producing a significant potentiating effect on allyl isothiocyanate- and diclofenac-induced currents of TRPA1 was isolated from the venom of sea anemone Metridium senile. It is a 35-amino acid peptide cross-linked by two disulfide bridges named τ-AnmTX Ms 9a-1 (short name Ms 9a-1) according to a structure similar to other sea anemone peptides belonging to structural group 9a. The structures of the two genes encoding the different precursor proteins of Ms 9a-1 were determined. Peptide Ms 9a-1 acted as a positive modulator of TRPA1 in vitro but did not cause pain or thermal hyperalgesia when injected into the hind paw of mice. Intravenous injection of Ms 9a-1 (0.3 mg/kg) produced a significant decrease in the nociceptive and inflammatory response to allyl isothiocyanate (the agonist of TRPA1) and reversed CFA (Complete Freunds Adjuvant)-induced inflammation and thermal hyperalgesia. Taken together these data support the hypothesis that Ms 9a-1 potentiates the response of TRPA1 to endogenous agonists followed by persistent functional loss of TRPA1-expressing neurons. We can conclude that TRPA1 potentiating may be useful as a therapeutic approach as Ms 9a-1 produces significant analgesic and anti-inflammatory effects in mice models of pain.


Scientific Reports | 2016

High-Affinity α-Conotoxin PnIA Analogs Designed on the Basis of the Protein Surface Topography Method.

Igor E. Kasheverov; Anton O. Chugunov; Denis S. Kudryavtsev; Igor A. Ivanov; Maxim N. Zhmak; Irina V. Shelukhina; Ekaterina N. Spirova; Valentin M. Tabakmakher; Elena Zelepuga; Roman G. Efremov; Victor I. Tsetlin

Despite some success for small molecules, elucidating structure–function relationships for biologically active peptides — the ligands for various targets in the organism — remains a great challenge and calls for the development of novel approaches. Some of us recently proposed the Protein Surface Topography (PST) approach, which benefits from a simplified representation of biomolecules’ surface as projection maps, which enables the exposure of the structure–function dependencies. Here, we use PST to uncover the “activity pattern” in α-conotoxins — neuroactive peptides that effectively target nicotinic acetylcholine receptors (nAChRs). PST was applied in order to design several variants of the α-conotoxin PnIA, which were synthesized and thoroughly studied. Among the best was PnIA[R9, L10], which exhibits nanomolar affinity for the α7 nAChR, selectivity and a slow wash-out from this target. Importantly, these mutations could hardly be delineated by “standard” structure-based drug design. The proposed combination of PST with a set of experiments proved very efficient for the rational construction of new bioactive molecules.


Frontiers in Neurology | 2017

Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain

Irina V. Shelukhina; Nikita Mikhailov; Polina Abushik; Leniz Nurullin; Evgeny E. Nikolsky; Rashid Giniatullin

Background Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Methods Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Results Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Conclusion Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which could be activated by the ACh released from parasympathetic nerves. These receptors represent a potential target for novel therapeutic interventions in trigeminal pain and probably in migraine.

Collaboration


Dive into the Irina V. Shelukhina's collaboration.

Top Co-Authors

Avatar

Victor I. Tsetlin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena V. Kryukova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Igor E. Kasheverov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxim N. Zhmak

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Igor A. Ivanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuri N. Utkin

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge